

Single Phase, Multifunction Metering IC with Multiple Anti-Tampering Features

Product Data Sheet PL8331

Features

Wide supply voltage range: 2.4V to 3.6V

Ultra-low power consumption

- Normal mode:

Total: 2.2mA @ 3V

Sleep Mode: 3uARTC only: 1.1uA

• Multi mode power saving function

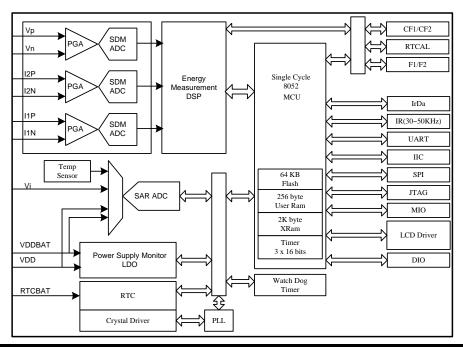
Internal switch between regulated and battery inputs

 Compatible with CTs, resistive shunts and Rogowski Coil sensors

• Wake-up from standby mode in less than 5us

• Operation temperature range: -40°C to +80°C

• 64-LQFP(7x7) package


General Description

The PL8331 series of ultra-low power mixed-signal processors consist of several devices featuring different sets of peripherals targeted for energy meter applications. They integrate analog front end and fixed function DSP solution with an enhanced 8052 MCU core, RTC and LCD driver in a single part. The measurement core includes active, reactive, apparent energy calculations, voltage, current RMS, and frequency measurements. This information can be used as energy billing and any necessary application. Also included are a built-in 16-bit timer, LCD segment drive capability and hardware multiplier.

The PL8331 integrates three PGAs with gain settings from 1x to 32x. Three 24-bit sigma-deltas A/D converters guarantee precision in captured data and enough needed resolution.

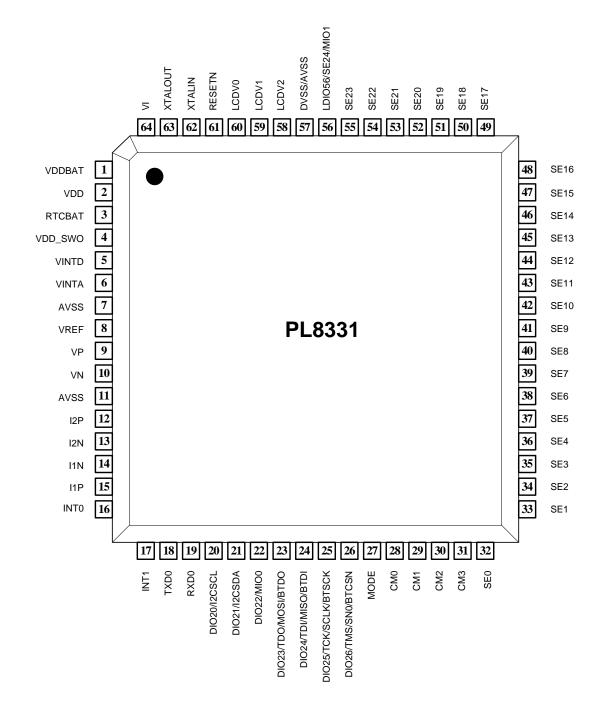
The microprocessor functionality includes a single-cycle 8052 core, a real-time clock, UART, and an SPI, I2C and JTAG interface. It reduces the program memory size requirement and makes it easy to integrate complicated designs. The programming is very easy and supports multiple ways (SPI or JTAG). No external voltage is needed for programming.

Block Diagram

Prolific Technology Inc.

7F, No.48, Sec. 3, Nan Kang Rd., Nan Kang, Taipei 115, Taiwan

Tel: +886-2-2654-6363; Fax: 886-2-22654-6161


Website: http://www.prolific.com.tw/

Single Phase, Multifunction Metering IC with Multiple Anti-Tampering Features

Product Data Sheet PL8331

Pin Diagram

Tel: +886-2-2654-6363; Fax: 886-2-22654-6161

Website: http://www.prolific.com.tw/

Table of Contents

1.	Featur	es	10
2.	Gener	al Descriptions	11
	2.1 F	unction Block Diagram	11
	2.2 D	Detail features Description	11
3.	Ping D	Diagram & Pin Descriptions	12
	_	Pin Diagram	
		Pin Descriptions	
4.		ical Characteristics	
		Absolute Maximum Rating	
5.		Management	
٠.		Power Supply Architecture	
		Battery Switchover	
		Power Operation Modes	
	5.3	•	
	5.3		
	5.3	•	
	5.4 V	Vakeup Events	23
	5.5 T	ransitioning Between Operation Modes	23
	5.5	.1 Normal Mode to Battery Mode	23
	5.5	.2 Sleep Mode to Battery Mode	23
	5.5	.3 Sleep Mode to Normal Mode	24
	5.5	.4 Battery Mode to Normal Mode	24
	5.6 P	Power Supply Indication Flag	24
	5.7 S	SDM ADCs Power Control	25
6.	MCU C	Core Architecture	26
	6.1 8	052 REGISTERS	26
	6.1	.1 Accumulator	26
	6.1	.2 B register	26
	6.1	.3 R0 ~ R7 registers	26
	6.1	.4 Program Counter	27
	6.1	<u> </u>	27
	6.1	, ,	
	6.1	,	
	6.2 N	lemory Overview	27

Release: Mar, 2013

	6.2.1	Program Memory	27
	6.2.2	Internal Data Memory	27
	6.2.3	Embedded External Data Memory	28
	6.2.4	SFRs	28
	6.3 Add	dressing Mode	28
	6.4 Inst	truction Set	29
	6.4.1	Read-Modify-Write	33
	6.4.2	Special Function Register Description	34
	6.5 Data	a pointer	36
	6.6 Wat	tchdog Timer	38
	6.7 Tim	ner0 & Timer1	39
	6.7.1	SFR Register – 88h~8Dh	41
	6.8 Tim	ner2	43
	6.8.1	SFR Register – C1h~C8h/CAh~CCh	44
7.	Eneray N	Measurement	
		ck diagram	
	7.1.1	Initialize HW DSP	
	7.1.2	Indirect Accessing	
	7.1.3	Writing to the DSP core Registers	
	7.1.4	Reading the DSP core Registers	
	7.1.5	Analog Inputs	51
	7.2 Cali	ibration method	54
	7.2.1	Calibration Point	54
	7.2.2	Calibration with UART Interface	54
	7.3 Ana	alog PGA/ Digital Gain	55
	7.3.1	Settings	55
	7.3.2	Set the PGA Gain Settings	56
	7.3.3	Set the Digital Gain	56
	7.4 Pha	ase Compensation	57
	7.5 RM	s	58
	7.5.1	Enable the Calculation of the RMS of Each Channel	58
	7.5.2	Performance Setting	59
	7.5.3	Get the Information	60
	7.6 Met	ter Constants	62
	7.7 Act	ive Power No Load Detection	62

8.	Inte	rface	S	63
	8.1	GPI	0	63
	8.2	UAR	РТО	66
	8	3.2.1	MODE 0	67
	8	3.2.2	MODE1	67
	8	3.2.3	MODE2	67
	8	3.2.4	MODE3	67
	8.3	MDU	J	70
	8.4	Inte	rrupt Pin(INT0/INT1/Others)	72
	8.5	SPI		79
	8.6	I2C.		83
	8	3.6.1	Serial Clock Rate of I2C	84
	8	3.6.2	IIC Register(SFR Register – DAh~DDh)	91
9.	LCD)		93
	9.1	Pow	ver Control	93
	9.2	Initia	alize	93
	9.3	LCD	Setup	93
	9.4	LCD	Timing and Waveforms	93
	9.5	LCD	Control Registers (SFR Registers –E5h~E8h/F8h~FCh)	94
	9.6		nory for LCD Buffer	
10.	RTC	<u>,</u>	·	98
			d/Write the RTC register	
			rrupt Setting	
			Calibration and Compensation	
11			stem	
		•	OSC	
12			and Internal Temperature Sensor	
			ck Diagram	
			cription	
			Enable the Temperature Sensor	
			Enable the SAR ADC	
			Set the PGA Gain of the SAR ADC	
			Select the Channel for Scanning	
			Read the SAR code	

13.	Reset System	106
14.	Package Outline Dimensions – PL8331 (7x7 - 64 pins)	107
15.	Ordering Information	109
	15.1 Packaging Information	109

List of Figures

Figure 2-1:	Function Block Diagram	11
Figure 3-1:	64 Pin(7x7) Diagram	12
Figure 5-1:	Power Supply Architecture	20
Figure 5-2:	Transitioning Between Operation Modes State Machine	24
Figure 6-1:	Watchdog Timer Block Diagram	38
Figure 6-2:	Timer0 in Mode0/Mode1	40
Figure 6-3:	Timer0 in mode0/mode1	40
Figure 6-4:	Timer0 in Mode 3	40
Figure 6-5:	Timer2 Block Diagram	43
Figure 6-6:	Block Diagram of Timer2 "Timer/Event Counter/Gated Timer"	47
Figure 6-7:	Compare Function of Timer2	48
Figure 6-8:	Compare Output of CO[0] , CO[1] , CO[2] and CO[3]	48
Figure 7-1:	Energy Measurement Block diagram	49
Figure 7-2:	Analog Inputs	52
Figure 7-3:	Block Diagram of Meter Measurement	52
Figure 7-4:	Fault Detection	54
Figure 8-1 :	Block Diagram of UART0	66
Figure 8-2 :	Baud Rate Generator of UART0	66
Figure 8-5 :	SPI Transfer Format	80
Figure 8-6 :	Waveform of I2C Bus	84
Figure 11-1	: Clock Divider for MCU and DSP	102
Figure 14-1	: PL8331 Package Outline Dimension	108

List of Tables

Table 3-1: Pin Desc	criptions1	5
Table 4-1: Electrica	al Characteristics1	8
Table 4-2: Absolute	Maximum Rating18	8
Table 4-3: Thermal	Resistance18	8
Table 5-1: PWRHV	Control Registers22	2
Table 5-2: Power St	upply Indication Flag24	4
Table 5-3: ADCs Po	ower Control Registers29	5
Table 6-1: Instruction	on Set	2
Table 6-2: Read-Mo	odify-Write Instruction3	3
Table 6-3: Basic MC	CU Registers3	5
Table 6-4: DPC regi	isters	6
Table 6-5: Data Poi	nter SFR	7
Table 6-6: Watchdo	og Timer SFR39	9
Table 6-7: TIMER0	& TIMER1 SFR 42	2
Table 6-8: TIMER2	SFR40	6
Table 7-1: DSP Soft	tware Reset49	9
Table 7-2: Meter Clo	ock Source Selection5	0
Table 7-3: DSP Inte	ernal Registers5	0
Table 7-4: ADC Clo	ck Setting52	2
Table 7-5: Calibration	on at Some Specific Conditions for Different Parameters 54	4
Table 7-6: ADC SFF	₹5	5
Table 7-7: PGA Gai	n SFR5	6
Table 7-8: Digital 0	Gain SFR5	7
Table 7-9: RMS Cor	ntrol SFR5	8
Table 7-10: RMS Pe	erformance Setting SFR6	0
Table 7-11: ADC, V	, I1 and I2 Registers6	1
Table 8-1 : Modes of	f UART06	6
Table 8-2 : Baud Rat	te of UART06	8
Table 8-3 : UART0 S	SFR69	9
Table 8-5 : Writing S	Sequence of MDU Registers for Different Operation70	0
Table 8-6 : Executing	g Cycle Time of MDU70	0

Product Data Sheet PL8331

Table 8-7 : Readout-Result Sequence of MDU Registers for Different Operation	71
Table 8-8 : MDU SFR	72
Table 8-9 : 18 Interrupt Sources, 6 Interrupt Group, and Natural Priority	73
Table 8-10 : Level of Interrupt Group	73
Table 8-11 : Interrupt Source	74
Table 8-12 : ISR SFR	79
Table 8-13 : SPI SFR	82
Table 8-14 : Clock Rate of I2C	84
Table 8-15 : Statues in I2C Master Transmitter Mode	86
Table 8-16 : Statues in I2C Master Receive Mode	87
Table 8-17 : Statues in I2C Slave Transmitter Mode	88
Table 8-18 : Tatues in I2C Slave Receive Mode	90
Table 8-19 : I2C SFR	92
Table 9-1 : LCD Control Registers (SFR Registers)	96
Table 11-1 : Registers for PLL Clock Setting1	02
Table 11-2 : Registers for MCU and DSP Divider1	03
Table 15-1: Packaging Information1	09

1. Features

GENERAL FEATURES

- Wide supply voltage range: 2.4V to 3.6V
- Ultra-low power consumption
 - Normal mode:

Total: 2.2mA @ 3V

- Sleep Mode: 3uA

- RTC only: 1.1uA

- Multi mode power saving function
- Internal switch between regulated and battery inputs
- Compatible with CTs, resistive shunts and Rogowski Coil sensors
- Wake-up from standby mode in less than 5us
- Operation temperature range: -40°C to +80°C
- 64-LQFP(7x7) package

ADC FEATURES

- Three second-order, 24-bit, delta-sigma
 Analog-to-Digital Converters
- Three differential input PGA front ADC (Gain=1,2,4,8,16,24,32)

ENERGY MEASUREMENT FEATURES

- Exceeds IEC62053 / ANSI C12.20 standards
 - 0.1% accuracy in 2000:1 current range
- Line voltage and frequency measurements
- Phase compensation ($\pm 5^{\circ}$)
- High frequency outputs proportional to active, reactive, apparent power (AP) or to Irms
- 40~70Hz line frequency range with the same calibration

MICROPROCESSOR FEATURES

- 8052-based core
- Single-cycle 8MIPS (Peak)
- 32.768 kHz external crystal with built in PLL
- Accurate RTC for time-of-use functions
- H/W watchdog timer (WDT)
- External interrupt sources
- SPI / I2C interface for EEPROM
- IrDa/UART/IR I/F for AMR
- Flash security
- 16-Bit timer
- Wake-up from I/O, temperature change, or UART
- 64kB flash memory, 2kB SRAM
- Supply voltage supervisor/monitor with built in SAR ADC
- Serial on board programming/debugging

LCD FEATURES

Up to 4x25 segment

2. General Descriptions

2.1 Function Block Diagram

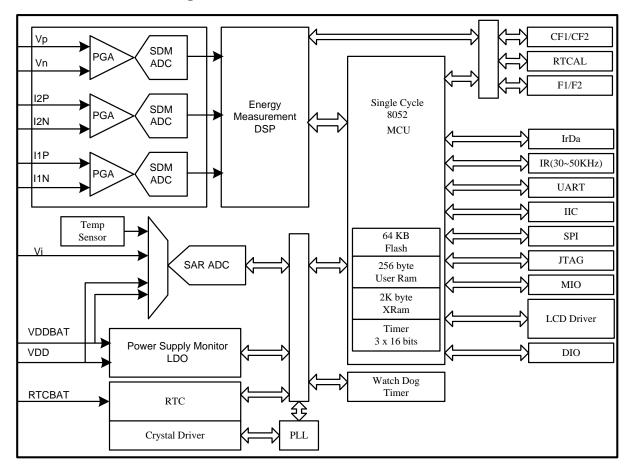


Figure 2-1: Function Block Diagram

2.2 Detail features Description

The PL8331 series of ultra-low power mixed-signal processors consist of several devices featuring different sets of peripherals targeted for energy meter applications. They integrate analog front end and fixed function DSP solution with an enhanced 8052 MCU core, RTC and LCD driver in a single part. The measurement core includes active, reactive, apparent energy calculations, voltage, current RMS, and frequency measurements. This information can be used as energy billing and any necessary application. Also included are a built-in 16-bit timer, LCD segment drive capability, and hardware multiplier.

The PL8331 integrates three PGAs with gain settings from 1x to 32x. Three 24-bit sigma-deltas A/D converters guarantee precision in captured data and enough needed resolution.

The microprocessor functionality includes a single-cycle 8052 core, a real-time clock, UART, an SPI, I2C and JTAG interface. It reduces the program memory size requirement and makes it easy to integrate complicated designs. The programming is very easy and supports multiple ways (SPI or JTAG) without the need of external voltage.

3. Ping Diagram & Pin Descriptions

3.1 Pin Diagram

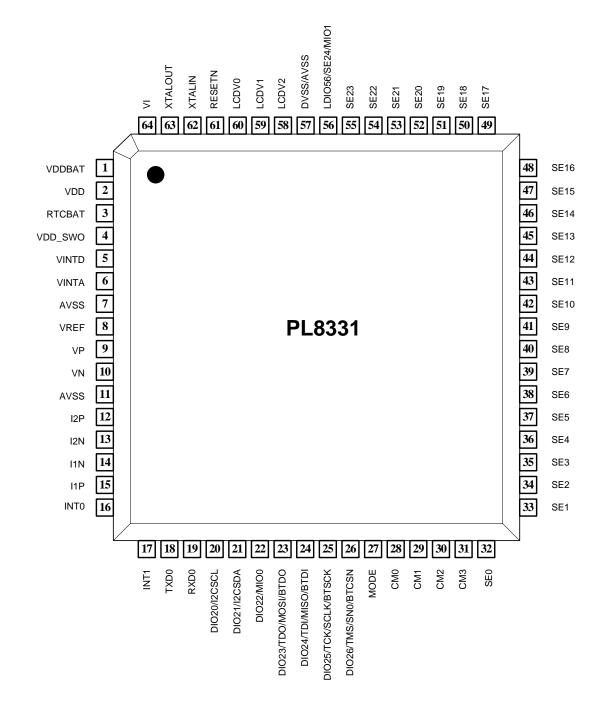


Figure 3-1: 64 Pin(7x7) Diagram

Release: Mar, 2013 - 12 / 110 - Rev.04

3.2 Pin Descriptions

Pin	Symbol	Description		
1	VDDBAT	Power supply input from battery with 2.4V to 3.6V range		
2	VDD	3V to 3.6V power supply input. This pin should be decoupled with a 10uF		
2	VDD	capacitor in parallel with a ceramic 100nF capacitor.		
3	RTCBAT	Power supply input from battery with 1.8V to 3.6V range		
4	VDDSWO	This pin should be decoupled with a 10uF capacitor in parallel with a ceramic		
4	VDDSWO	100nF capacitor.		
5	VINTD	This pin provides on-chip digital LDO. It should be decoupled with a ceramic		
5	VINTE	100nF capacitor.		
6	VINTA	This pin provides on-chip analog LDO. It should be decoupled with a ceramic		
O	VINTA	100nF capacitor.		
7	AVSS	This pin provides the ground reference for the analog circuitry.		
8	VREF	On-chip reference input/output pin. The reference value is 1.2V and should be		
0	VKEP	decoupled with a ceramic 100nF capacitor.		
9	VP	Analog Inputs for voltage channel. The maximum differential level is ±500mV		
10	VN	Analog Inputs for voltage channel. The maximum differential level is ±500mV		
11	AVSS	This pin provides the ground reference for the analog circuitry		
12	I2P	Analog Inputs for current channel. The maximum differential level is ±500mV		
13	I2N	Analog Inputs for current channel. The maximum differential level is ±500mV		
14	I1N	Analog Inputs for current channel. The maximum differential level is ±500mV		
15	I1P	Analog Inputs for current channel. The maximum differential level is ±500mV		
16	DIO46/INTO	General-Purpose digital I/O		
16	DIO16/INT0	External interrupt input 0		
17	DIO17/INT1/P1.0	General-Purpose digital I/O		
17		External interrupt input 0 / Port P1.0		
18	DIO18/	General-Purpose digital I/O		
10	TXD0/P1.1	Transmitter Data output port 0(Asynchronous) / Port P1.1		
19	DIO19/	General-Purpose digital I/O		
19	RXD0/P1.2	Receiver Data input port 0(Asynchronous) /Port P1.2		
20	DIO20	General-Purpose digital I/O		
20	I2CSCL	Clock pin for I ² C		
21	DIO21	General-Purpose digital I/O		
	I2CSDA	Data pin for I ² C		
22	DIO22	General-Purpose digital I/O		
	MIO0	PWM/CF/IRCF/RTCAL		
23	DIO23	General-Purpose digital I/O		

	TDO/MOSI/BTDO	JTAG TDO/SPI MOSI/SPI Flash Card programming mode data output
	DIO24	General-Purpose digital I/O
24	TDI/MISO/BTDI	JTAG TDI/SPI MISO/ SPI Flash Card programming mode data input
	DIO25	General-Purpose digital I/O
25	TCLK/SCLK/BTSCK	JTAG TCLK/SPI SCLK/ SPI Flash Card programming mode clock output
00	DIO26	General-Purpose digital I/O
26	TMS/SN0/BTCSN	JTAG TMS/SPI CSN/ SPI Flash Card programming mode CS output
07	MODE	0 : SPI Flash Card programming mode
27	MODE	1 : Normal mode with JTAG port enable
28	СМО	Common output 0 are used for LCD backplanes
29	CM1	Common output 1 are used for LCD backplanes
30	CM2	Common output 2 are used for LCD backplanes
31	СМЗ	Common output 3 are used for LCD backplanes
32	SE0	LCD segment output 0
33	SE1	LCD segment output 1
34	SE2	LCD segment output 2
35	SE3	LCD segment output 3
36	SE4	LCD segment output 4
37	SE5	LCD segment output 5
38	SE6	LCD segment output 6
39	SE7	LCD segment output 7
40	SE8	LCD segment output 8
41	SE9	LCD segment output 9
42	SE10	LCD segment output 10
43	SE11	LCD segment output 11
44	SE12	LCD segment output 12
45	SE13	LCD segment output 13
46	SE14	LCD segment output 14
47	SE15	LCD segment output 15
48	SE16	LCD segment output 16
49	SE17	LCD segment output 17
50	SE18	LCD segment output 18
51	SE19	LCD segment output 19
52	SE20	LCD segment output 20
53	SE21	LCD segment output 21
54	SE22	LCD segment output 22

55	SE23	LCD segment output 23
	LDIO56	General-Purpose digital I/O
56	SE24/MIO1	LCD segment output 24/ PWM/CF/IRCF/RTCAL
57	DVSS/AVSS	This pin provides the ground reference for the analog circuitry.
58	LCDV2	Output port for LCD levels. Refer to LCD charge pump section.
59	LCDV	Output port for LCD levels. Refer to LCD charge pump section.
60	LCDV0	Output port for LCD levels. Refer to LCD charge pump section.
61	RESETN	Reset input, active Low
62	XTALIN	Input port for crystal oscillator. Standard or watch crystals can be connected.
63	XTALOUT	Output port of crystal oscillator
64	VI	SAR ADC analog input pin for DC to 1kHz signal

Table 3-1: Pin Descriptions

4. Electrical Characteristics

(All parameters apply at VDD = 3.3 V \pm 5%, AGND = DGND = 0 V, Internal Reference, XTAL=32.768 KHz, TA = 25°C)

Parameter	Specifications	Unit	Comments
ACCURACY			Voltage channel with full-scale
Active Energy Measurement Error	0.1	% Reading	signal (±500 mV), 25°C, over a
Phase Error Between Channels			dynamic range of 2000 to 1
PF = 0.8 Capacitive	±0.05	Degrees(°)	
PF = 0.5 Inductive	±0.05	Degrees(°)	
Active Energy Measurement			
Bandwidth	8	KHz	
Reactive Energy Measurement Error	0.5	% Reading	25°C, over a dynamic range of
Vrms Measurement Error	0.5	% Reading	2000 to 1
Vrms Measurement Bandwidth	4	KHz	
Irms Measurement Error	0.5	% Reading	
Irms Measurement Bandwidth	4	KHz	
AC Power Supply Rejection			
Output Frequency Variation (CF)	0.01	% Reading type	
DC Power Supply Rejection			
Output Frequency Variation (CF)	0.01	% Reading type	
ANALOG INPUTS			
Maximum Signal Levels	±0.5	V peak	
		differential	
Input Impedance (DC)	400	kΩ	
Bandwidth (-3 dB)	14	kHz type	
ADC Offset Error	±10	mV max	
Gain Error	±1	% Ideal type	
REFERENCE INPUT			
REFIN/OUT Input Voltage Range	1.2	V	
CLKIN			
Input Clock Frequency	32.768	KHz	
PLL	4	MHz	Note : Selected by internal register
FAULT DETECTION			
Detection Threshold	6.25	%	Adjustable
Input Swap Threshold	6.25	%	Adjustable
Accuracy Fault Mode Operation	0.1	%	
Fault Detection Delay	3	Seconds	

Product Data Sheet PL8331

0 01			
Swap Delay	3	Seconds	
Internal ADCS (Σ-Δ & SAR)			
Power Supply Operation Range	2.4 ~ 3.6	V	
No Mission Codes	18	Bits	
SAR ADC Conversion Rate	500µ	Seconds	
SAR Resolution	10	Bits	
VI Analog Input Maximum Levels	VDD	V	
BATTERY SWITCH OVER			
VDD to VDDBAT Threshold	2.75	V	Typical
VDD to VDDBAT Delay	10	ns	
	30	ms	Active SAR ADC by sensed VI
VDDBAT to VDD Threshold	2.75	V	·
VDDBAT to VDD Delay	30	ms	
POWER SUPPLY			
V_{DD}	2.4	V	Min
	3.6	V	Max
VDDBAT	3.6	V	Max
	2.4	V	Min
RTCBAT	3.6	V	Max
	1.8	V	Min
I _{DD}			
Normal Mode	2.2	mA	VDD=3.0V
ADC+Vref	0.3	mA	1 channel
Digital + I/O	0.8	mA	
Sleep Mode	1.1	uA	RTC only / RTCBAT=3.0V
FLASH MEMORY			-
Endurance	10,000	Cycles	
Data Retention	20	Years	
CRYSTAL OSCILLATOR			
Frequency	32.768	KHz	
Power On Reset (POR)			
VDD POR			
Detection Threshold	2.7	V	
POR active time out period	30	ms	
VDDSWO POR			
Detection Threshold	2	V	

POR active time out period	15	ms	
VINTD POR			
Detection Threshold	2.1	V	
POR active time out period	15	ms	

Table 4-1: Electrical Characteristics

4.1 Absolute Maximum Rating

TA = 25°C, unless otherwise noted.

Parameter	Rating
VDD to DGND	-0.3 V to +3.6 V
VDDBAT to DGND	-0.3 V to +3.6 V
RTCBAT to DGND	-0.3 V to +3.6 V
Input LCD Voltage to AGND, LCDVA, LCDVB, LCDVC1	-0.3 V to VDDSWO + 0.3 V
Analog Input Voltage to AGND, VP, VN, IP/IPA, IPB, and IN	-1 V to +1 V
Digital Input Voltage to DGND	-0.3 V to VSWOUT + 0.3 V
Digital Output Voltage to DGND	-0.3 V to VSWOUT + 0.3 V
Operating Temperature Range (Industrial)	-40°C to +80°C
Storage Temperature Range	-65°C to +150°C
64-Lead LQFP, Power Dissipation	
Lead Temperature (Soldering, 30 sec)	300°C

Table 4-2: Absolute Maximum Rating

1 When used with external resistor divider.

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

 θ JA is specified for worst-case condition, that is, a device soldered in a circuit board for surface-mount packages.

Package Type	θЈΑ θ	JC	Unit
64-Lead LQFP	60	20.5	°C/W

Table 4-3: Thermal Resistance

Release: Mar, 2013 - 18 / 110 - Rev.04

ESD CAUTION

ESD (electrostatic discharge) sensitive device.

Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy [SD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

5. Power Management

5.1 Power Supply Architecture

PL8331 has 3 power supply inputs, VDD, VDDBAT and RTCBAT. VDD require a single 3.3V power supply for full operation. A battery backup with maximum 3.6V can be connected to the VDDBAT input.

Internally, PL8331 connects VDD and VDDBAT to VDDSWO which is used to drive power for internal circuitry. The VDDSWO output pin reflects the voltage at the internal power supply. This pin can also be used to power a limited of peripheral components like EEPROM, hall sensor, etc.

The LDOA and LDOD are on-chip linear regulators and powered by VDDSWO. LDOA is for analog block and LDOD is for digital block. The output voltage can be adjusted for saving power consumption.

PL8331 provides automatic battery switchover between VDD and VDDBAT based on the voltage level detected at VDD. The VBAT_SWITCH flag will be updated when battery switchover occurs and when the VDD power supply is restored.

RTCBAT power is for RTC circuit and 32768Hz crystal driver only.

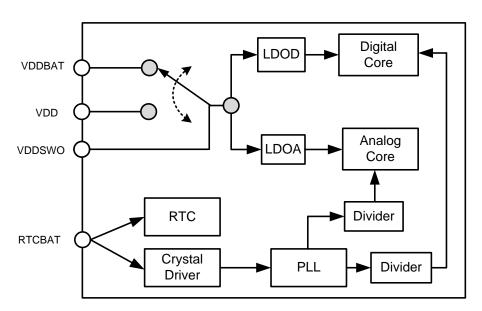


Figure 5-1: Power Supply Architecture

In an energy meter application, VDD(3.3V) is typically generated from the ac line voltage and regulated to 3.3V by a voltage regulator. A 3.3V battery can be connected to VDDBAT and RTCBAT. RTCBAT only supply power for internal hardware calendar and crystal driver.

Release: Mar, 2013 - 20 / 110 - Rev.04

5.2 Battery Switchover

VDD to VDDBAT

When VDD voltage < 2.75V, VDDSWO switches from VDD to VDDBAT.

VDDBAT to VDD

When VDD voltage > 2.75V, VDDSWO switches back to VDD.

5.3 Power Operation Modes

5.3.1 Normal Mode

VDDSWO is connected to VDD. All of the analog circuitry and digital circuitry are powered by LDOA and LDOD. The default PLL clock frequency established during a power-on reset is 4.096MHz

5.3.2 Battery Mode

VDDSWO is connected to VDDBAT. In this operation mode, MCU and digital blocks are enabled by default, while the ADCs are disabled.

5.3.3 Sleep Mode

This is a very low power consumption mode for use in battery operation. VDDSWO is connected to VDDBAT and all of the digital and analog circuitry powered through LDOA, LDOD regulators are disabled, including the MCU core. Some peripherals are active. The active blocks detect events to wake up. The LCD circuitry can be kept active to show necessary information during sleep mode.

PL8331 provides some scratch pads RAM that are maintained during this mode. These RAM can be used to save data from Normal or Battery mode with entering sleep mode.

20h	SFR-FFh SCRATCH0 SCRATCH0[7:0]	Bits 7:0 7:0	Description		
20h	SCRATCH0 SCRATCH0[7:0]	7:0			
20h	SCRATCH0[7:0]		-	Description	
21h		7:0	Default : 0x00	Access : R/W	
21h	COD ATOLIA	7.0	General Purpose regis	ter	
\$	SCRATCH1	7:0	Default : 0x00	Access : R/W	
T	SCRATCH1[7:0]	7:0	General Purpose regis	ter	
zzn –	SCRATCH2	7:0	Default : 0x00	Access : R/W	
3	SCRATCH2[7:0]	7:0	General Purpose regis	ter	
	SCRATCH3	7:0	Default : 0x00	Access : R/W	
23h	SCRATCH3[7:0]	7:0	General Purpose register		
	SCRATCH20	7:0	Default : 0x00	Access : R/W	
24h	SCRATCH20[7:0]	7:0	General Purpose regis	ter	
T	SCRATCH21	7:0	Default : 0x00	Access : R/W	
25h	SCRATCH21[7:0]	7:0	General Purpose regis	ter	
26h	SCRATCH22	7:0	Default : 0x00	Access : R/W	
	SCRATCH22[7:0]	7:0	General Purpose regis	ter	
T	SCRATCH23	7:0	Default : 0x00	Access : R/W	
27h	SCRATCH23[7:0]	7:0	General Purpose regis	ter	
28h	SCRATCH30	7:0	Default : 0x00	Access : R/W	
_	SCRATCH30[7:0]	7:0	General Purpose regis	ter	
29h	SCRATCH31	7:0	Default : 0x00	Access : R/W	
	SCRATCH31[7:0]	7:0	General Purpose regis	ter	
	SCRATCH32	7:0	Default : 0x00	Access : R/W	
2Ah	SCRATCH32[7:0]	7:0	General Purpose regis	ter	
	SCRATCH33	7:0	Default : 0x00	Access : R/W	
2Bh	SCRATCH33[7:0]	7:0	General Purpose regis	ter	

Table 5-1: PWRHV Control Registers

5.4 Wakeup Events

In sleep mode, PL8331 can be triggered by the following events:

Power Restore

When VDD > 2.75V, VDDSWO will switch from VDDBAT to VDD, and the power operation mode switches to normal mode. This event is maskable.

· RESETN pin

When RESETN goes low, the power operation mode switches to battery mode. This event is maskable

· RTC midnight

When RTC midnight event occurs, the power operation mode switches to battery mode. This event is maskable.

DIOx pin

When DIOx goes low or falling edge occurs, the power operation mode switches to battery mode.

RXn pin

When a RXn rising or falling edge occurs, the power operation mode switches to battery mode.

· RTC alarm

When RTC alarm occurs, the power operation mode switches to battery mode.

5.5 Transitioning Between Operation Modes

The operating mode is determined by the power supply connected to VDDSWO. Following describes events that change the operating mode.

5.5.1 Normal Mode to Battery Mode

If VDD < 2.75V, it will enable battery switchover events, and VDDSWO switches to VDDBAT. The ADCs will be disabled automatically by default. To reduce power consumption, the user code can initiate a transition to sleep mode.

Entering Sleep Mode

To reduce power consumption when VDDSWO is connected to VDDBAT, user code can initiate sleep mode by setting registers to shut down the MCU core.

5.5.2 Sleep Mode to Battery Mode

MCU may need to wake up from sleep mode to service wake-up events, and can return to sleep mode by setting registers to shut down the MCU core. Firmware can check VBAT_SWITCH flag to identify if this event happened, then execute wake up events service routine.

5.5.3 Sleep Mode to Normal Mode

If VDD > 2.75V, it will enable battery switchover events, and VDDSWO switches to VDD. When this switch occurs, the MCU code can initiate normal operating mode by identifying VBAT_SWITCH flag.

5.5.4 Battery Mode to Normal Mode

If VDD > 2.75V before MCU enters sleep mode, the operating mode switches to normal mode. When this switch occurs, the code execution continues normally. A software reset can be performed to start from the beginning.

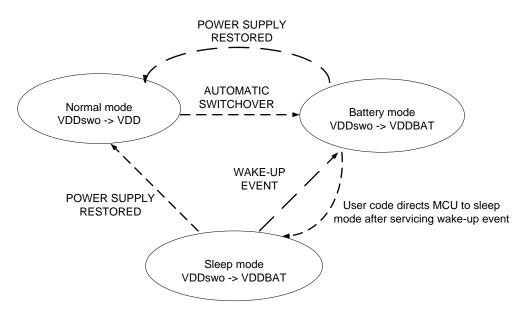


Figure 5-2: Transitioning Between Operation Modes State Machine

5.6 Power Supply Indication Flag

VBAT_SWITCH=1 WDDSWO power by VDDBAT pin.

VBAT_SWITCH=0 WDDSWO power by VDD pin.

PWRHV Control Registers - Indirect Accessing						
Address: P	Address: PWRHVINDEX(FEh) / Data: PWRHVDATA(FFh)					
SFR-FEh	SFR-FFh	Bits Description				
83h	ANAPWR_CTL3	7:0	Default : 0x00 Access : RO			
	VBAT_SWITCH	2	1 = VDDSWO power source is from VDDBAT			

Table 5-2: Power Supply Indication Flag

The VBAT_SWITCH bit indicates what VDDSWO is connected to. This bit can be used to control program flow. Because code execution always starts at the power-on reset vector, this bit can be tested to determine which power supply is being used and branch to normal code execution or to wake up event code execution.

Release: Mar, 2013 - 24 / 110 - Rev.04

5.7 SDM ADCs Power Control

In metering application, ADC channel may not be used in some conditions like neutral missing. Or application may only need 1voltage/1current input, hence PL8331 provides power down control for saving current consumption. PLL and Vref also can be powered down in sleep mode to save battery power.

PWRLV Co	PWRLV Control Registers - Indirect Accessing						
Address: P	Address: PWRLVINDEX(CEh) / Data: PWRLVDATA(CFh)						
SFR-CEh	SFR-CFh	Bits	Description				
2Eh ANA_PD0 7:0 Default : 0xFE Access : R/W		Access : R/W					
	7 I2 ADC power of		I2 ADC power down → 1	: power down			
		6:1	I1 ADC power down → 1	1 ADC power down → 1: power down			
		0	Vref power down → 1: p	ower down			
2Fh	ANA_PD1	7:0	Default : 0xFF	Access : R/W			
		7:5	V ADC power down → 1	: power down			
		4:0	I2 ADC power down → 1	: power down			
30h	ANA_PD2	7:0	Default : 0x07	Access : R/W			
	2:0 V ADC power do		V ADC power down → 1	: power down			
31h	ANA_CTL13	7:0	Default : 0x01	Access : R/W			
	3 PLL power dov		PLL power down 1: pow	er down			

Table 5-3: ADCs Power Control Registers

6. MCU Core Architecture

The PL8331 has one 8052 MCU core – a fast single-chip configurable 8-bit microcontroller which executes ASM51 instruction set. This MCU is equipped with peripherals functionally compatible with peripherals of standard 8052. The peripherals are accessed by MCU with SFR (special function register) accession. The SFR (special function register) space is mapped into the upper 128 bytes of internal data memory space and is accessed by direct addressing only. It provides an interface between the CPU and all on-chip peripherals.

The structure of the blocks consists of:

TIMER0 – provides a flexible 16-bit timer/counter with control and status register.

TIMER1 – provides a flexible 16-bit timer/counter with control and status register.

TIMER2 – contains the 16-bit Timer-2 with Compare-Unit (4 compare modules), control and status register.

The MCU manipulates operands in three memory spaces; these are the 256-bytes internal data memory (RAM), the 2k-bytes external data memory (embedded external-RAM), and the 64k-bytes internal program memory (FLASH ROM).

6.1 8052 REGISTERS

The most widely used registers are A (accumulator), B, R0, R1, R2, R2, R3, R4, R5, R6, R7, PC (program counter), SP, PSW, and DPTR (data pointer).

6.1.1 Accumulator

The instruction uses the accumulator as both source and destination for calculations, logic operations and moves.

6.1.2 B register

The B register is used by the multiply and divide instructions, MUL AB and DIV AB, to hold one of the operands.

6.1.3 R0 ~ R7 registers

The registers R0 ~ R7 are implemented by Register-Bank. There are total 4 Register-Banks among MCU. These registers are convenient for temporary storage of mathematical operands. The four register banks are located in the first 32 bytes of Internal Data Memory RAM. The RS0 and RS1 bits in the program status word SFR (PSW, 0xD0) decide which bank is active.

6.1.4 Program Counter

The program counter points to the address of the next instruction to be executed. The program counter in the 8051 is 16 bits wide. The MCU wake up at memory address 0000 when it is powered up or system reset.

6.1.5 Stack Point Register

The 8-bit Stack Pointer is an internal SFR used to address the On-chip Memory (IRAM) when operating as a software stack. The Stack Pointer points to the last used location of the stack. When MCU is powered up, the SP contains the value 07.

6.1.6 PSW (program status word) Register

The PSW register is referred to as flag register. Only 6 bits of it are used by MCU and defined as CY (carry), AC (auxiliary carry), RS1, RS0 (Register Bank Select), OV (overflow), and P (parity).

6.1.7 DPTR (data pointer register)

Data pointers accelerate data blocks moving. Data Pointer Register (DPTR) is a 16-bit register that is used to address external memory or peripherals.

There are 2 data pointers in MCU. Only one of them can be active at a given moment and it is selected using the "dpsel" register. The active Data Pointer Register can be accessed as SFRs: DPH, DPL.

6.2 Memory Overview

The PL8331 has four memory spaces, program memory, internal data memory, embedded external data memory and SFR (Special Function Register).

6.2.1 Program Memory

The program memory address space comprises of an internal 64k-byte memory space. The embedded Flash can be erased/programmed by SPI-interface/UART download operation.

6.2.2 Internal Data Memory

The internal 256-bytes data memory is divided into two parts: 0 to 127 RAM and 128 to 255 RAM. They can be addressed as below:

- RAM 0 to 127 can be addressed directly and indirectly as in the 80C51. Address pointers are R0 and R1 of the selected register bank.
- RAM 128 to 255 can only be addressed indirectly. Address pointers are R0 and R1 of the selected register bank.

6.2.3 Embedded External Data Memory

The embedded external Data Memory has 2k-bytes RAM space. It is indirectly addressable locations 0 to 2047 by the MOVX instructions. Address pointers are R0 and R1 of the selected register bank and DPTR.

6.2.4 SFRs

Through direct addressing at address location 128-255, SFRs control the most parts of peripherals like traditional 8052, the memory spaces must be addressed by separated address mode. The chart below shows the methods.

6.3 Addressing Mode

The MCU supports eight addressing modes.

- Register Addressing
- Direct Addressing
- Indirect Addressing
- Immediate Addressing
- Indirect Addressing with Displacement
- Relative Addressing
- Page Addressing
- Extended Addressing

6.4 Instruction Set

The MCU instructions are binary code compatible and perform the same functions as industry standard 8052. The tables below give a summary of the instruction cycles.

Mnemonic	Description	Code	Bytes	Cycles
Arithmetic operations				
ADD A,Rn	Add register to accumulator	0x28-0x2F	1	2
ADD A,direct	Add directly addressed data to accumulator	0x25	2	3
ADD A,@Ri	DD A,@Ri Add indirectly addressed data to accumulator		1	4
ADD A,#data	Add immediate data to accumulator	0x24	2	2
ADDC A,Rn	Add register to accumulator with carry	0x38-0x3F	1	2
ADDC A,direct	Add directly addressed data to accumulator with carry	0x35	2	3
ADDC A,@Ri	Add indirectly addressed data to accumulator with carry	0x36-0x37	1	4
ADDC A,#data	Add immediate data to accumulator with carry	0x34	2	2
SUBB A,Rn	Subtract register from accumulator with borrow	0x98-0x9F	1	2
SUBB A,direct	Subtract directly addressed data from accumulator with borrow	0x95	2	2
SUBB A,@Ri	Subtract indirectly addressed data from accumulator with borrow	0x96-0x97	1	4
SUBB A,#data	Subtract immediate data from accumulator with borrow	0x94	2	2
INC A	Increment accumulator	0x04	1	1
INC Rn	Increment register	0x08-0x0F	1	3
INC direct	Increment directly addressed location	0x05	2	4
INC @Ri	Increment indirectly addressed location	0x06-0x07	1	5
INC DPTR	Increment data pointer	0xA3	1	1
DEC A	Decrement accumulator	0x14	1	1
DEC Rn	Decrement register	0x18-0x1F	1	3
DEC direct	Decrement directly addressed location	0x15	2	4
DEC @Ri	Decrement indirectly addressed location	0x16-0x17	1	5
MUL AB	MUL AB Multiply A and B		1	4
DIV Divide A by B		0x84	1	4
DA A	Decimally adjust accumulator	0xD4	1	1
Logic operations				
ANL A,Rn	AND register to accumulator	0x58-0x5F	1	2
ANL A,direct	AND directly addressed data to accumulator	0x55	2	3

ANL A,@Ri AND indirectly addressed data to accumulator 0x56-0x57 1 4 ANL A,#data AND immediate data to accumulator 0x54 2 2 ANL direct,A AND accumulator to directly addressed location 0x52 2 4 ANL direct,Adata AND immediate data to directly addressed location 0x53 3 4 ORL A,Rn OR register to accumulator 0x48-0x4F 1 2 ORL A,direct OR directly addressed data to accumulator 0x45 2 3 ORL A, direct OR indirectly addressed data to accumulator 0x44 2 2 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,Adata OR immediate data to directly addressed location 0x43 3 4 ORL direct,Adata OR immediate data to directly addressed location 0x65-0x67 1 2 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x62-0x67 2 </th <th>Mnemonic</th> <th colspan="2">emonic Description</th> <th>Bytes</th> <th>Cycles</th>	Mnemonic	emonic Description		Bytes	Cycles
ANL direct,A AND accumulator to directly addressed location 0x52 2 4 ANL direct,#data AND immediate data to directly addressed location 0x53 3 4 ORL A,RIM OR register to accumulator 0x48-0x4F 1 2 ORL A,direct OR directly addressed data to accumulator 0x48-0x47 1 4 ORL A,@RI OR indirectly addressed data to accumulator 0x44 2 2 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,Adata OR immediate data to directly addressed location 0x43 3 4 VRL A,RIM Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,@RI Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL direct,A Exclusive OR immediate data to accumulator 0x62 2 2 XRL direct,Addata Exclusive OR immediate data to directly addressed 0x62 <td< td=""><td>ANL A,@Ri</td><td>AND indirectly addressed data to accumulator</td><td>0x56-0x57</td><td>1</td><td>4</td></td<>	ANL A,@Ri	AND indirectly addressed data to accumulator	0x56-0x57	1	4
ANL direct,#data AND immediate data to directly addressed location 0x53 3 4 ORL A,Rn OR register to accumulator 0x48-0x4F 1 2 ORL A,direct OR directly addressed data to accumulator 0x45-0x47 1 4 ORL A,@Ri OR indirectly addressed data to accumulator 0x46-0x47 1 4 ORL A,#data OR indirectly addressed data to accumulator 0x44-0x47 1 4 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,A OR accumulator to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x66-0x67 1 4 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A, direct, A Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,A Exclusive OR immediate data to directly addressed 0x62 <t< td=""><td>ANL A,#data</td><td>AND immediate data to accumulator</td><td>0x54</td><td>2</td><td>2</td></t<>	ANL A,#data	AND immediate data to accumulator	0x54	2	2
ORL A,Rn OR register to accumulator 0x48-0x4F 1 2 ORL A,direct OR directly addressed data to accumulator 0x45 2 3 ORL A,@Ri OR indirectly addressed data to accumulator 0x46-0x47 1 4 ORL A,@Adata OR indirectly addressed data to accumulator 0x44 2 2 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,Adata OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x66-0x67 1 4 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL direct,A Exclusive OR indirectly addressed data to accumulator 0x64 2 2 XRL direct,A Exclusive OR indirectly addressed data to directly addressed location 0x63 3 4 XRL direct,A Exclusive OR indirectly addressed data to directly addressed data to accu	ANL direct,A	ANL direct,A AND accumulator to directly addressed location		2	4
ORL A,direct OR directly addressed data to accumulator 0x45 2 3 ORL A,@Ri OR indirectly addressed data to accumulator 0x46-0x47 1 4 ORL A,@Ri OR indirectly addressed data to accumulator 0x46-0x47 1 4 ORL A,#data OR immediate data to directly addressed location 0x42 2 4 ORL direct,#data OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66 0x67 1 4 XRL direct,A Exclusive OR immediate data to accumulator 0x64 2 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR i	ANL direct,#data	AND immediate data to directly addressed location	0x53	3	4
ORL A,@Ri OR indirectly addressed data to accumulator 0x46-0x47 1 4 ORL A,#data OR immediate data to accumulator 0x44 2 2 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,#data OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,#data Exclusive OR immediate data to accumulator 0x64 2 2 XRL direct,A Exclusive OR immediate data to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62	ORL A,Rn	OR register to accumulator	0x48-0x4F	1	2
ORL A,#data OR immediate data to accumulator 0x44 2 2 ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,#data OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,#data Exclusive OR immediate data to accumulator 0x62 2 2 XRL direct,A Exclusive OR immediate data to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to accumulator 0x6	ORL A,direct	OR directly addressed data to accumulator	0x45	2	3
ORL direct,A OR accumulator to directly addressed location 0x42 2 4 ORL direct,#data OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,#data Exclusive OR immediate data to accumulator 0x62 2 4 XRL direct,A Exclusive OR immediate data to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed location 0x63 3 4 CLR A Clear accumulator 0x62 2 4 CPL A Complement accumulator 0xF4 1 1 CPL A Rotate accumulator left 0x23 1 1 RL A Rotate accumulator right through carry 0x33 1 1 RR A Rotat	ORL A,@Ri	OR indirectly addressed data to accumulator	0x46-0x47	1	4
ORL direct,#data OR immediate data to directly addressed location 0x43 3 4 XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,#data Exclusive OR immediate data to accumulator 0x64 2 2 XRL direct,A Exclusive OR accumulator to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed location 0x63 3 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x63 3 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed 0x63 3 4 XRL direct,#data Exclusive OR immediate data to accumulator 0x64 1 1 XRL direct,#data Exclusive OR immediate data to acc	ORL A,#data	OR immediate data to accumulator	0x44	2	2
XRL A,Rn Exclusive OR register to accumulator 0x68-0x6F 1 2 XRL A,direct Exclusive OR directly addressed data to accumulator 0x65 2 3 XRL A,@Ri Exclusive OR indirectly addressed data to accumulator 0x66-0x67 1 4 XRL A,#data Exclusive OR immediate data to accumulator 0x64 2 2 XRL direct,A Exclusive OR accumulator to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed location 0x63 3 4 CLR A Clear accumulator 0xE4 1 1 CPL A Complement accumulator 0xF4 1 1 RL A Rotate accumulator left through carry 0x33 1 1 RL A Rotate accumulator left through carry 0x33 1 1 RR A Rotate accumulator right through carry 0x13 1 1 RWAP A Swap nibbles within the accumulator 0xC4 1 1 SWAP A Swap nibbles within the accumula	ORL direct,A	OR accumulator to directly addressed location	0x42	2	4
XRL A,direct Exclusive OR directly addressed data to accumulator XRL A,@Ri Exclusive OR indirectly addressed data to accumulator XRL A,#data Exclusive OR immediate data to accumulator XRL direct,A Exclusive OR accumulator to directly addressed one of the content of the	ORL direct,#data	OR immediate data to directly addressed location	0x43	3	4
XRL A,direct accumulator XRL A,@Ri Exclusive OR indirectly addressed data to accumulator XRL A,#data Exclusive OR immediate data to accumulator XRL direct,A Exclusive OR accumulator to directly addressed location XRL direct,#data Exclusive OR immediate data to directly addressed location XRL direct,#data Exclusive OR immediate data to directly addressed location CLR A Clear accumulator CLR A Clear accumulator CPL A Rotate accumulator RL A Rotate accumulator left RL A Rotate accumulator left through carry RR A Rotate accumulator right RR A Rotate accumulator right through carry Ox33 1 1 RRC A Rotate accumulator right through carry Ox13 1 XWAP A Swap nibbles within the accumulator Data transfer operations MOV A,Rn Move register to accumulator MOV A,@Ri Move indirectly addressed data to accumulator Ox74 2 2 MOV A,@Ri Move immediate data to accumulator Move directly addressed data to accumulator Ox76-0xFF 1 1 MOV Rn,A Move accumulator to register Ox78-0xFF 1 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register Ox78-0xFF 1 MOV Rn,direct Move directly addressed data to register	XRL A,Rn	Exclusive OR register to accumulator	0x68-0x6F	1	2
XRL A,@Ri accumulator 0x64 2 2 XRL A,#data Exclusive OR immediate data to accumulator 0x64 2 2 XRL direct,A Exclusive OR accumulator to directly addressed location 0x62 2 4 XRL direct,#data Exclusive OR immediate data to directly addressed location 0x63 3 4 CLR A Clear accumulator 0xE4 1 1 CPL A Complement accumulator 0xF4 1 1 RL A Rotate accumulator left 0x23 1 1 RL A Rotate accumulator left through carry 0x33 1 1 RR A Rotate accumulator right through carry 0x33 1 1 RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations The complement of the com	XRL A,direct		0x65	2	3
XRL direct,A Exclusive OR accumulator to directly addressed location XRL direct,#data Exclusive OR immediate data to directly addressed location CLR A Clear accumulator CPL A Complement accumulator RL A Rotate accumulator left RC A Rotate accumulator right RR A Rotate accumulator right through carry RR A Rotate accumulator RR A Rotat	XRL A,@Ri	·	0x66-0x67	1	4
XRL direct,A location	XRL A,#data	Exclusive OR immediate data to accumulator	0x64	2	2
XRL direct,#data addressed location CLR A Clear accumulator 0xE4 1 1 1 CPL A Complement accumulator 0xF4 1 1 1 RL A Rotate accumulator left 0x23 1 1 1 RLC A Rotate accumulator left through carry 0x33 1 1 1 RR A Rotate accumulator right 0x03 1 1 1 RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE8-0xEF 1 1 1 MOV A,@Ri Move indirectly addressed data to accumulator 0xE6-0xE7 1 4 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move directly addressed data to register 0xA8-0xAF 2 4 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	XRL direct,A		0x62	2	4
CPL A Complement accumulator 0xF4 1 1 1 RL A Rotate accumulator left 0x23 1 1 1 RLC A Rotate accumulator left through carry 0x33 1 1 1 RR A Rotate accumulator right 0x03 1 1 1 RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE5 2 3 MOV A,@Ri Move indirectly addressed data to accumulator 0xF5 2 3 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xA8-0xAF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	XRL direct,#data	·	0x63	3	4
RL A Rotate accumulator left	CLR A	Clear accumulator	0xE4	1	1
RLC A Rotate accumulator left through carry 0x33 1 1 RR A Rotate accumulator right 0x03 1 1 RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE8-0xEF 1 1 MOV A,direct Move directly addressed data to accumulator 0xE5 2 3 MOV A,@Ri Move indirectly addressed data to accumulator 0x74 2 2 MOV A,#data Move immediate data to accumulator 0xF8-0xFF 1 1 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	CPL A	Complement accumulator	0xF4	1	1
RR A Rotate accumulator right 0x03 1 1 RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE8-0xEF 1 1 MOV A,direct Move directly addressed data to accumulator 0xE5 2 3 MOV A,@Ri Move indirectly addressed data to accumulator 0xE6-0xE7 1 4 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	RL A	Rotate accumulator left	0x23	1	1
RRC A Rotate accumulator right through carry 0x13 1 1 SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE8-0xEF 1 1 MOV A,direct Move directly addressed data to accumulator 0xE5 2 3 MOV A,@Ri Move indirectly addressed data to accumulator 0xE6-0xE7 1 4 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	RLC A	Rotate accumulator left through carry	0x33	1	1
SWAP A Swap nibbles within the accumulator 0xC4 1 1 Data transfer operations MOV A,Rn Move register to accumulator 0xE8-0xEF 1 1 MOV A,direct Move directly addressed data to accumulator 0xE5 2 3 MOV A,@Ri Move indirectly addressed data to accumulator 0xE6-0xE7 1 4 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	RR A	Rotate accumulator right	0x03	1	1
Data transfer operationsMOV A,RnMove register to accumulator0xE8-0xEF11MOV A,directMove directly addressed data to accumulator0xE523MOV A,@RiMove indirectly addressed data to accumulator0xE6-0xE714MOV A,#dataMove immediate data to accumulator0x7422MOV Rn,AMove accumulator to register0xF8-0xFF11MOV Rn,directMove directly addressed data to register0xA8-0xAF24	RRC A	Rotate accumulator right through carry	0x13	1	1
MOV A,RnMove register to accumulator0xE8-0xEF11MOV A,directMove directly addressed data to accumulator0xE523MOV A,@RiMove indirectly addressed data to accumulator0xE6-0xE714MOV A,#dataMove immediate data to accumulator0x7422MOV Rn,AMove accumulator to register0xF8-0xFF11MOV Rn,directMove directly addressed data to register0xA8-0xAF24	SWAP A	Swap nibbles within the accumulator	0xC4	1	1
MOV A, direct Move directly addressed data to accumulator MOV A, @Ri Move indirectly addressed data to accumulator MOV A, #data Move immediate data to accumulator MOV Rn, A Move accumulator to register MOV Rn, direct Move directly addressed data to register Move accumulator to register Move directly addressed data to register	Data transfer operations				•
MOV A,@Ri Move indirectly addressed data to accumulator 0xE6-0xE7 1 4 MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	MOV A,Rn	Move register to accumulator	0xE8-0xEF	1	1
MOV A,#data Move immediate data to accumulator 0x74 2 2 MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	MOV A,direct	Move directly addressed data to accumulator	0xE5	2	3
MOV Rn,A Move accumulator to register 0xF8-0xFF 1 1 MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	MOV A,@Ri Move indirectly addressed data to accumulator		0xE6-0xE7	1	4
MOV Rn,direct Move directly addressed data to register 0xA8-0xAF 2 4	MOV A,#data Move immediate data to accumulator		0x74	2	2
	MOV Rn,A	Move accumulator to register	0xF8-0xFF	1	1
MOV Rn,#data Move immediate data to register 0x78-0x7F 2 2	MOV Rn,direct	Move directly addressed data to register	0xA8-0xAF	2	4
	MOV Rn,#data	Move immediate data to register	0x78-0x7F	2	2

Product Data Sheet PL8331

Mnemonic	Description	Code	Bytes	Cycles
MOV direct,A	Move accumulator to direct	0xF5	2	2
MOV direct,Rn	Move register to direct	0x88-0x8F	2	3
1401/ 11 14 11 10	Move directly addressed data to directly addressed	0x85	3	4
MOV direct1,direct2	location			
MOV direct,@Ri	Move indirectly addressed data to directly	0x86-0x87	2	5
MOV direct, @Ki	addressed location			
MOV direct,#data	Move immediate data to directly addressed	0x75	3	3
WO V uncot,#data	location			
MOV @Ri,A	Move accumulator to indirectly addressed location	0xF6-0xF7	1	3
MOV @Ri,direct	Move directly addressed data to indirectly	0xA6-0xA7	2	4
MOV @RI,direct	addressed location			
MOV @Ri,#data	Move immediate data to in directly addressed	0x76-0x77	2	3
IVIOV @IXI,#data	location			
MOV DPTR,#data16	Load data pointer with a 16-bit immediate	0x90	3	3
MOVC A,@A+DPTR	Load accumulator with a code byte relative to	0x93	1	4
	DPTR			
MOVC A,@A+PC	Load accumulator with a code byte relative to PC	0x83	1	4
MOVX A,@Ri	1) Move external RAM (8-bit addr.) to accumulator	0xE2-0xE3	1	5-12
MOVX A,@DPTR	1) Move external RAM (16-bit addr.) to	0xE0	1	4-11
, ,	accumulator			
MOVX @Ri,A	1) Move accumulator to external RAM (8-bit addr.)	0xF2-0xF3	1	6-13
MOVX @DPTR,A	1) Move accumulator to external RAM (16-bit	0xF0	1	5-12
,	addr.)			
PUSH direct	Push directly addressed data onto stack	0xC0	2	4
POP direct	Pop directly addressed location from stack	0xD0	2	3
XCH A,Rn	Exchange register with accumulator	0xC8-0xCF	1	2
XCH A,direct	Exchange directly addressed location with	0xC5	2	3
	accumulator			
XCH A,@Ri	Exchange indirect RAM with accumulator	0xC6-0xC7	1	4
XCHD A,@Ri	Exchange low-order nibbles of indirect and	0xD6-0xD7	1	5
Dua manya kanana kanana	accumulator			
Program branches	Abordoto colorado col	400041		
ACALL addr11	Absolute subroutine call	xxx10001b	2	4
LCALL addr16	Long subroutine call	0x12	3	4
RET	Return from subroutine	0x22	1	5
RETI	Return from interrupt	0x32	1	5

Mnemonic	Description	Code	Bytes	Cycles
AJMP addr11	Absolute jump	xxx00001b	2	3
LJMP addr16	Long jump	0x02	3	4
SJMP rel	SJMP rel Short jump (relative address)		2	3
JMP @A+DPTR	Jump indirect relative to the DPTR	0x73	1	3
JZ rel	Jump if accumulator is zero	0x60	2	3
JNZ rel	Jump if accumulator is not zero	0x70	2	3
JC rel	Jump if carry flag is set	0x40	2	3
JNC	Jump if carry flag is not set	0x50	2	3
JB bit,rel	Jump if directly addressed bit is set	0x20	3	5
JNB bit,rel	Jump if directly addressed bit is not set	0x30	3	5
JBC bit,rel	Jump if directly addressed bit is set and clear bit	0x10	3	5
O INTE A III A	Compare directly addressed data to accumulator	0xB5	3	5
CJNE A,direct,rel	and jump if not equal			
CINIT A #data ral	Compare immediate data to accumulator and jump	0xB4	3	4
CJNE A,#data,rel	if not equal			
CJNE Rn,#data,rel	Compare immediate data to register and jump if	0xB8-0xBF	3	4
CJNE KII,#data,Iei	not equal			
CJNE @Ri,#data,rel	Compare immed. to ind. and jump if not equal	B6-B7	3	6
DJNZ Rn,rel	Decrement register and jump if not zero	D8-DF	2	4
DJNZ direct,rel	Decrement directly addressed location and jump if	D5	3	5
D3NZ direct, rei	not zero			
NOP	No operation	00	1	1
CLR C	Clear carry flag	0xC3	1	1
CLR bit	Clear directly addressed bit	0xC2	2	4
SETB bit	Set directly addressed bit	0xD2	2	4
CPL C	Complement carry flag	0xB3	1	1
CPL bit Complement directly addressed bit		0xB2	2	4
ANL C,bit AND directly addressed bit to carry flag		0x82	2	3
ANL C,/bit AND complement of directly addressed bit to carry		0xB0	2	3
ORL C,bit	ORL C,bit OR directly addressed bit to carry flag		2	3
ORL C,/bit	OR complement of directly addressed bit to carry	0xA0	2	3
MOV C,bit	Move directly addressed bit to carry flag	0xA2	2	3
MOV bit,C	Move carry flag to directly addressed bit	0x92	2	4

Table 6-1: Instruction Set

Release: Mar, 2013 - 32 / 110 - Rev.04

6.4.1 Read-Modify-Write

Some instructions are used to read a byte from I/O port (P0-P3), modify it and rewrite it back. They are called "read-modify-write" instructions. These instructions read the latch rather than the pin.

Mnemonic	Description	Code	Bytes	Cycles
ANL direct,A	AND accumulator to direct	0x52	2	3
ANL direct,#data	AND immediate data to direct	0x53	3	4
ORL direct,A	OR accumulator to direct	0x42	2	3
ORL direct,#data	OR immediate data to direct	0x43	3	4
XRL direct,A	Exclusive OR accumulator to direct	0x62	2	3
XRL direct,#data	Exclusive OR immediate data to direct	0x63	3	4
JBC bit, rel	JBC bit, rel Jump if bit is set and clear bit		3	4
CPL bit	CPL bit Complement bit		2	3
INC direct Increment direct		0x05	2	3
INC @Ri	NC @Ri Increment indirect		1	3
DEC direct	DEC direct Decrement direct		2	3
DEC @Ri	Decrement indirect	0x16-0x17	1	3
DJNZ direct,rel Decrement and jump if not zero		0xD5	3	4
MOV bit,C Move carry flag to direct bit		0x92	2	3
CLR bit Clear bit		0xC2	2	3
SETB bit	Set bit	0xD2	2	3

Table 6-2: Read-Modify-Write Instruction

6.4.2 Special Function Register Description

SFR Register - E0/F0/D0/80/90/A0/B0/81/87h

Basic MCU Register

Address	Mnemonic	Bits	Description		
	ACC	7:0	Default : 0x00	Access : R/W	
E0h	А	7:0	Accumulator Accumulator is used by most of the 8051 instructions to hold the operand and to store the result of an operation		
	В	7:0	Default : 0x00 Access : R/W		
F0h	В	7:0	B Register The B register is used during multiplying and division instructions		
	PSW	7:0	Default : 0x00	Access : R/W	
	су	7	Carry flag Carry bit in arithmetic operations and accumulator for Boolean operations.		
	ac	6	Auxiliary Carry flag Set if there is a carry-out from 3rd bit of Accumulator in BCD operations		
	fO	5	General purpose Flag 0 General purpose flag available for user		
Dok	rs1	4	Register bank select control bit 1 It is used to select working register bank		
D0h	rs0	3	Register bank select control bit 0 It is used to select working register bank		
	ov	2	Overflow flag Set in case of overflow in Accumulator during arithmetic operations		
	f1	1	General purpose Flag 1 General purpose flag available for user		
	p	0	Parity flag Reflects the number of '1's in the Accumulator. P = '1' if Accumulator contains an odd number of '1's P = '0' if Accumulator contains an even number of '1's		

Address	Mnemonic	Bits	Description		
80h	P0	7:0	Default : 0xFF	Access : R/W	
	P0	7:0	Port 0 The port is open-drain and requires pull-ups.		
90h	P1	7:0	Default : 0xFF	Access : R/W	
	P1	7:0	Port 1 The port is open-drain and requires pull-ups.		
	P2	7:0	Default : 0xFF	Access : R/W	
a0h	P2	7:0	Port 2 The port is open-drain and requires pull-ups.		
b0h	P3	7:0	Default : 0xFF	Access : R/W	
	P3	7:0	Port 3 The port is open-drain and requires pull-ups.		
81h	SP	7:0	Default : 0x07	Access : R/W	
	SP	7:0	Stack Pointer This register points to the top of stack in internal data memory space		
	PCON	7:0	Default : 0x08	Access : R/W	
87h	smod	7	UART 0 baud rate select As UART0 is in mode2 (sm0=1 , sm1=0) , Smod = 1 : baud rate is Fclk/32 Smod= 0 : baud rate is Fclk/64		
	wdt_tm	6	Watchdog Timer Test Mode flag When set to 1, the fclk/12 divider at the input of the Watchdog Timer is skipped		
	fix_zero	5:4	NO use , fix zero This 2 bits must be fixed as '00'.		
	fix_one	3	NO use , fix one This bit must be fixed as '1'.		
	fix_zero	2:0	NO use , fix zero This 3 bits must be fixed as '000'.		

Table 6-3: Basic MCU Registers

6.5 Data pointer

The Data Pointer is a 16-bit register used as indirect address source for MOVX @DPTR, MOVC @A+DPTR or JMP @A+DPTR instructions. There are two data pointers in MCU. They are accessible as four SFRs at locations 0x82 (DPL), 0x83 (DPH) and 0x84 (DPL1), 0x85 (DPH1). The "dps" affects only MOVX @DPTR, JMP @A+DPTR, MOVC A, @A+DPTR, INC DPTR, MOV DPTR,#data16. There is a dedicated arithmetic unit implemented to improve the DPTR-based data transfers.

The additional SFR named "dpc" located at address 0x93 chooses the type of DPTR auto-modification. The auto-modification is triggered by each DPTR-based data transfer instruction (MOVX A,@DPTR or MOVX @DPTR,A). The DPTR-related arithmetic unit performs the following operations on current DPTR (chosen by "dps") depending on "dpc" settings:

dpc.2	dpc.1	Dpc.0	operation	Description
х	х	0	-	No auto-modifications
0	0	1	+1	Auto-increment by one
0	1	1	-1	Auto-decrement by one
1	0	1	+2	Auto-increment by two
1	1	1	-2	Auto-decrement by two

Table 6-4: DPC registers

SFR Register - 82-85h/92-93h

Data Pointer Register

Address	Mnemonic	Bits	Description		
92h	DPS	7:0	Default : 0x00	Access : R/W	
	NU	7:1	NO USED		
	DPTR_SELECT	0	0 : DPTR is DPH and DPL 1: DPTR is DPH1 and DPL1		
93h	DPC	7:0	Default:0x00	Access : R/W	
	NU	7:6	NO USED		
	NXT_DPTR	5:3	Next Data Pointer Selection The contents of this field is loaded to the "DPTR_SELECT" field of "dps" register after each MOVX @DPTR instruction. Note that this feature is always enabled, therefore for each of the "dps" registers this field has to contain a different value pointing to itself so that the auto-switching does not occur with default (reset) values.		

Address	Mnemonic	Bits	Description	
			Auto-modification size	
			When zero, the current DP	TR is automatically modified by 1
	DPC.2	2	after each MOVX @DPTR instruction when dps.0=1.	
			When one, the current DP	TR is automatically modified by 2
			after each MOVX @DPTR	instruction when dps.0=1.
			Auto-modification directi	ion
			When zero, the current DP	TR is automatically incremented
	DPC.1	1	after each MOVX @DPTR	instruction when dps.0=1.
			When one, the current DP	TR is automatically decremented
			after each MOVX @DPTR	instruction when dps.0=1.
			Auto-modification enable	
	DPC.0	0	When set, enables auto-modification of the current DPTR	
			after each MOVX @DPTR instruction	
		7:0	Default:0x00	Access : R/W
82h	DPL		The low byte of DPTR0 .	
02.11	51 E		When "DPTR_SELECT" =0 , DPL can be accessed by	
			MOVC/MOVX instruction.	
		7:0	Default:0x00	Access : R/W
83h	DPH		The high byte of DPTR0 .	
OSII			When "DPTR_SELECT" =	0 , DPH can be accessed by
			MOVC/MOVX instruction.	
		7:0	Default:0x00	Access : R/W
84h	DPL1		The low byte of DPTR1 .	
0411	DPLI		When "DPTR_SELECT" =	1 , DPL1 can be accessed by
			MOVC/MOVX instruction.	
		7:0	Default:0x00	Access : R/W
85h	DPH1		The high byte of DPTR1 .	
0011			When "DPTR_SELECT" =	1 , DPH1 can be accessed by
			MOVC/MOVX instruction.	

Table 6-5: Data Pointer SFR

6.6 Watchdog Timer

The Watchdog Timer contains 15-bit counter, reload register and the clock can be pre-scaled by 2, 12, 16 according with some control bits of SFR. The below figure depicts the block diagram:

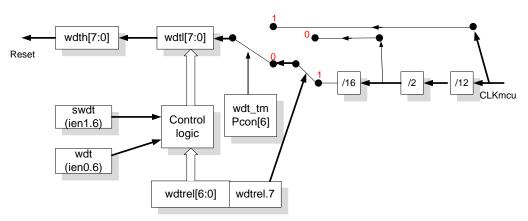


Figure 6-1: Watchdog Timer Block Diagram

The count rate of the Watchdog Timer depends on the MSB of the "wdtrel" register. When the "wdtrel.7"=1, the Watchdog Timer is incremented every 12*32=384 clock cycles, which makes the whole period to be 12*32*256*128=12582912 clock cycles long. When the "wdtrel.7"=0, the Watchdog Timer is incremented every 12*2=24 clock cycles, which makes the whole period to be 12*2*256*128=786432 clock cycles long. When the "wdt_tm" test mode input is set to 1, the count rate of the Watchdog Timer is CLKmcu clock rate (all dividers -1/12, 1/8, 1/2, 1/16 are omitted) to shorten the time required for the Watchdog to overflow (for verification purposes).

Start procedure

The only way to start the watchdog is by software. The instructions below will start the watchdog:

MOV WDTREL, #07FH ;setup the timer initial value
SETB IEN0.6 ;start or refresh WDT timer

SETB IEN1.6

Once started, the Watchdog Timer can only be stopped by the hardware reset.

When watchdog counter enters the state of 7FFCh, the internal reset is generated as the "wdts" output is active. The "wdts" flag of the "ip0" register is also set upon the Watchdog Timer reset, while it is cleared upon external hardware "reset" signal. The "wdts" signal does not reset the Watchdog, which remains running. When it overflows from 7FFFh to 0000h, the "wdts" output is deactivated, while the "wdts" flag of "ip0" register remains set to allow the software to determine whether the reset was caused by external input or by the Watchdog timeout.

To prevent resetting the MCU, the programmer must refresh the watchdog regularly. The method to refresh is

Release: Mar, 2013 - 38 / 110 - Rev.04

the same as the method to start. The first instruction sets the "wdt" bit of the "ien0" register and the second one sets the "swdt" flag of the "ien1" register. The maximum allowed delay between setting the "wdt" and "swdt" is 1 instruction cycles (that means the instructions which set both flags are not separated with any other instruction).

Watchdog timer Register (SFR Register- 86h)

Address	Mnemonic	Bits	Description	
	wdtrel	7:0	Default : 0x00	Access : R/W
	wdtrel.7	7	Prescaler select When set, the watchdog divide-by-16 prescaler.	is clocked through an additional
86h	wdtrelvle	6:0	This value is loaded to the	est 7 bits of the watchdog timer. Watchdog Timer when a refresh is e setting of bits wdt (ien0.6) and
	IEN0		Default : 0x00	Access : R/W
A8h	wdt	Watchdog timer refresh flag Set to initiate a refresh of the watchdog timer. M directly before swdt (ien1.6) is set to prevent an un refresh of the watchdog timer. The wdt bit is of hardware after the next instruction executed after that had set this bit, so that watchdog refresh call only with direct sequence of setting wdt and swdt.		the watchdog timer. Must be set so is set to prevent an unintentional timer. The wdt bit is cleared by instruction executed after the one at watchdog refresh can be done
	IEN1	7:0	Default : 0x00	Access : R/W
B8h	swdt 6		after setting wdt (ien0.6	resh flag. watchdog timer. When set directly), a watchdog timer refresh is ediately cleared by hardware.

Table 6-6: Watchdog Timer SFR

6.7 Timer0 & Timer1

Timer0 and Timer1 can be used either as timers or as event counters.

In mode 0:

Timer0 and Timer1 are configured as a 13-bit register. The upper 3 bits of "tl0" should be ignored.

In mode 1:

The Timer0 and Timer1 are configured as a 16-bit register.

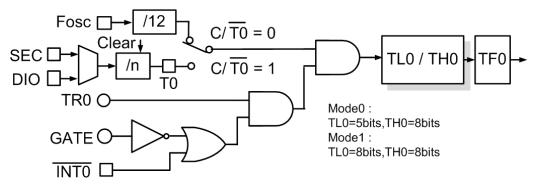


Figure 6-2: Timer0 in Mode0/Mode1

In mode 2:

The Timer0 and Timer1 are configured as an 8-bit register with auto-reload.

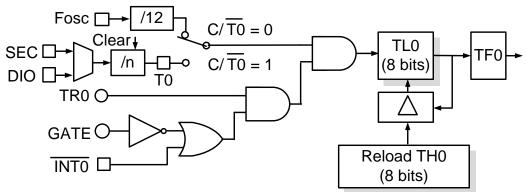


Figure 6-3: Timer0 in mode0/mode1

In mode 3:

Timer 0 is configured as one 8-bit timer/counter and one 8-bit timer.

In mode 3 Timer1 is stopped.

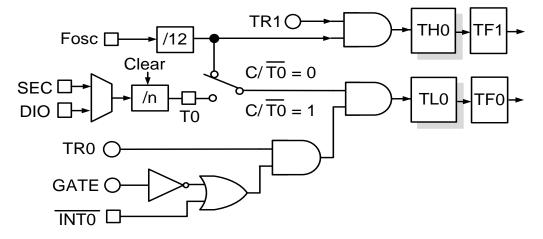


Figure 6-4: Timer0 in Mode 3

Release: Mar, 2013 - 40 / 110 - Rev.04

6.7.1 SFR Register - 88h~8Dh

Timer0 / Timer1 Register

Address	Mnemonic	Bits	Description		
	TCON	7:0	Default : 0x00	Access : R/W	
	tf1	7	Timer 1 overflow flag Bit set by hardware when Timer1 overflows. This flag can cleared by software and is automatically cleared when interrupt is processed.		
	tr1	6	Timer1 Run control Set by the user to turn on T stops.	Timer/Counter 1. If cleared, Timer 1	
	tfO			Fimer 0 overflows. This flag can be automatically cleared when	
trO	trO	4	Timer0 Run control Set by the user to turn on Timer/Counter 1. If cleared, 7 stops.		
88h	ie1	3	External interrupt 1 flag Set by hardware, when external interrupt int1 (edge/leve depending on settings) is observed. Cleared by hardware when interrupt is processed.		
		2		control s activated at falling edge on input errupt 1 is activated at low level on	
		1	External interrupt 0 flag Set by hardware, when external interrupt int0 (edge/level, depending on settings) is observed. Cleared by hardware when interrupt is processed.		
	itO		External interrupt 0 type control If set, external interrupt 0 is activated at falling edge on in pin. If cleared, external interrupt 0 is activated at low level input pin.		

Address	Mnemonic	Bits	Description		
			Timer 1 gate control		
	timer1gate	7	If set, enables external gate control (pin "int(1)") for Counter		
			1. Is incremented every falling edge on "t1" pin.		
			Timer 1 counter/timer select		
	timer1 c/t	6	Selects Timer or Counter operation. When set to 1, a Counter		
			operation is performed, when cleared to 0, the Timer/Counted		
			1 will function as a Time.		
	Time and mad	_	Mode selection of timer1		
	Timer1 m1	5	m1 = 0, $m0 = 0$: mode 0 , 13-bit timer mode		
			m1 = 0 , m0 = 1 : mode 1 , 16-bit timer mode		
	Timer1 m0	4	m1 = 1 , m0 = 0 : mode 2 , 8-bit auto reload		
			m1 = 1 , m0 = 1 : mode 3 , timer1 stop		
			Timer 0 gate control		
	Timer0gate	3	If set, enables external gate control (pin "int(0)") for Counter		
			0. Is incremented every falling edge on "t0" pin.		
			Timer 0 counter/timer select		
	Timer0 c/t	2	Selects Timer or Counter operation. When set to 1, a Counter		
			operation is performed, when cleared to 0, the Timer/Counter 0 will function as a Time.		
	Timer0 m1	1	Mode selection of timer1		
			m1 = 0, $m0 = 0$: mode 0 , 13-bit timer mode m1 = 0, $m0 = 1$: mode 1 , 16-bit timer mode		
		_	m1 = 1, m0 = 0 : mode 2 , 8-bit auto reload		
	Timer0 m0	0	m1 = 1, m0 = 1 : mode 3 , timer0 split timer		
	TLO	7:0	Default : 0x00 Access : R/W		
8Ah	TLO	7	Low byte of Timer 0		
8Bh	TL1	7:0	Default : 0x00 Access : R/W		
ODII	TL1	7	Low byte of Timer 1		
8Ch	тно	7:0	Default : 0x00 Access : R/W		
	TH0	7	High byte of Timer 0		
8Dh	TH1	7:0	Default : 0x00 Access : R/W		
JUII	TH1	7	High byte of Timer 1		

Table 6-7: TIMER0 & TIMER1 SFR

Release: Mar, 2013 - 42 / 110 - Rev.04

6.8 Timer2

Timer 2 has more functions than timer0/timer1. It can be configured for either counter or timer and compare operation. The CO[0], CO[1], CO[2] and CO[3] are the compare output.

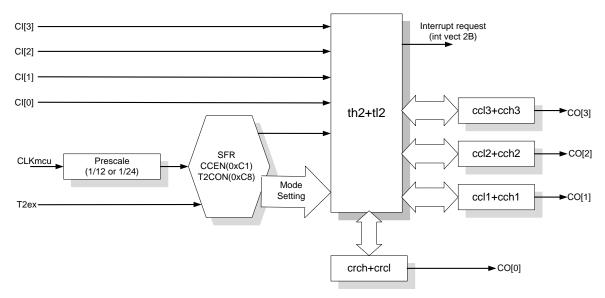


Figure 6-5: Timer2 Block Diagram

The SFR "CCEN" and "T2CON" control the Timer2 and decide which mode it is. Some bits of "T2CON" also decide the input of timer2 that is from prescaler or pin "t2ex". There are total 10 SFR registers for counter/timer purpose. Eight of them are for 4-channel Compare:

CRCH, CRCL: for channel-0 Compare operation.
 CCH1, CCL1: for channel-1 Compare operation
 CCH2, CCL2: for channel-2 Compare operation
 CCH3, CCL3: for channel-3 Compare operation

The SFR TH2 and THL are the high-byte and low-byte of Timer2. One of four Compare function block is controlled by CCEN SFR register.

6.8.1 SFR Register - C1h~C8h/CAh~CCh

Timer2 Register

Address	Mnemonic	Bits	Description				
C1h	CCEN	7:0	Default : 0x00	Access : R/W			
	cocah3, cocal3	7:6	compare/capture mode s	election for channel 3			
			[cocah3, cocal3] =				
			00: compare/capture disa	abled (timer/counter mode			
			enable)				
			01: capture mode enable	, Capture on rising edge at			
			pin Cl3				
			10: compare mode enable	e			
			11: capture mode enable , Capture on write operation into				
			register CCL3				
	cocah2, cocal2	5:4	compare/capture mode s	election for channel 2			
			[cocah2 , cocal2] =				
			00: compare/capture disa	abled (timer/counter mode			
			enable)				
			01: capture mode enable	, Capture on rising edge at			
			pin CI2				
			10 : compare mode enabl	e			
			11 : capture mode enable	, Capture on write operation into			
			register CCL2				
	cocah1, cocal1	3:2	compare/capture mode s	election for channel 1			
			[cocah1 , cocal1] =				
			00: compare/capture disa	abled (timer/counter mode			
			enable)				
			01: capture mode enable	, Capture on rising edge at pin CI1			
			10 : compare mode enabl	e			
			11 : capture mode enable	, Capture on write operation into			
			register CCL1				

Address	Mnemonic	Bits	Description	
	cocah0, cocal0	1:0	compare/capture mode s	election for channel 0
			[cocah0 , cocal0] =	
			00: compare/capture disa	abled (timer/counter mode
			enable)	
			01: capture mode enable	, Capture on rising edge at pin CI0
			10 : compare mode enabl	e
			11 : capture mode enable	, Capture on write operation into
			register CCL0	
C8h	T2CON	7:0	Default : 0x00	Access : R/W
	t2ps	7	prescaler select	
			0 : timer2 is clocked with 1	/12 of CLKmcu frequency.
			1 : timer2 is clocked with 1	/24 of CLKmcu frequency.
	i3fr	6	This bit has two function	s
			"int3" active edge selecti	ion
			Interrupt source "int3" ac	tive on
			0 : falling edge	
			1 : rising edge	
			For capture channel 0 co	ntrol
			0 : CI0 falling edge detec	ct
			1: CI0 rising edge detect	t
			Note : CI1 ~ CI3 are fixe	d rising-edge detect
	i2fr	5	"int2" active edge selecti	ion
			Interrupt source "int2" ac	tive on
			0 : falling edge	
			1: rising edge	
	t2r1	4	Timer2 reload mode	
	t2r0	3	0x : reload disable	
	1210		10 : mode 0	
			11 : mode 1	
	t2cm	2	Timer2 compare mode	
			Please fixed as "0"	
	t2i1	1	Timer2 input select	
			00 : timer2 stop	

Address	Mnemonic	Bits	Description	
	t2i0	0	01 : 1/12 or 1/24	of frequency CLKmcu
			10 : timer2 is incre	emented by falling edge of pin"t2"
			11 : 1/12 or 1/24	of frequency CLKmcu , gated by
			pin "t2"	
CCh	TL2	7:0	Default : 0x00	Access : R/W
	TL2	7:0	Low byte of Timer 2	2
CDh	TH2	7:0	Default : 0x00	Access : R/W
	TH2	7	High byte of Time 2	2
CAh	CRCL	7:0	Default : 0x00	Access : R/W
	CRCL	7:0	Low byte of Compa	are/Reload/Capture Register
CBh	CRCH	7:0	Default : 0x00	Access : R/W
	CRCH	7:0	High byte of Compa	are/Reload/Capture Register
C2h	CCL1	7:0	Default : 0x00	Access : R/W
	CCL1	7:0	Low byte of COMP	ARE/CAPTURE REGISTER 1
C3h	CCH1	7:0	Default : 0x00	Access : R/W
	CCH1	7:0	High byte of COMP	PARE/CAPTURE REGISTER 1
C4h	CCL2	7:0	Default : 0x00	Access : R/W
	CCL2	7:0	Low byte of COMP	ARE/CAPTURE REGISTER 2
C5h	CCH2	7:0	Default : 0x00	Access : R/W
	CCH2	7:0	High byte of COMP	PARE/CAPTURE REGISTER 2
C6h	CCL3	7:0	Default : 0x00	Access : R/W
	CCL3	7:0	Low byte of COMP	ARE/CAPTURE REGISTER 3
C7h	ССНЗ	7:0	Default : 0x00	Access : R/W
	ССНЗ	7:0	High byte of COMP	PARE/CAPTURE REGISTER 3

Table 6-8: TIMER2 SFR

As mentioned above, Timer2 can operate in Timer/counter, and compare mode. It is necessary to describe every mode from user's viewpoint.

(1) Timer/Event counter/Gated timer mode

When all cocahx, cocalx bits are '00', Timer2 is used as "Timer/Event counter/Gated timer". In this condition, if "t2i1" and "t2i0" bit of "T2CON" SFR are not "00", Timer2 will start operation. The below chart shows the block-diagram of "Timer/Event counter/Gated timer":

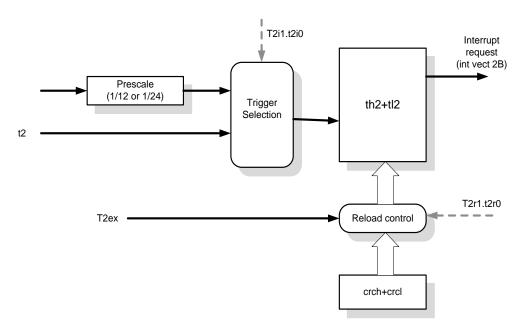


Figure 6-6: Block Diagram of Timer2 "Timer/Event Counter/Gated Timer"

The "t2r1" and "t2r0" bits of T2CON SFR decide the reload mode of TIMER2.

Reload Mode 0: Reload signal is generated by Timer 2 overflow (auto reload).

Reload Mode 1: Reload signal is generated by negative transition at the corresponding input pin "t2ex".

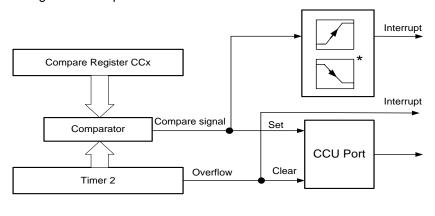
(a) Timer2 as one Timer

This mode is invoked by setting the "t2i0"=1 and "t2i1"=0 flags of "t2con" register. In this mode, the count rate is derived from the "CLKmcu". The Timer 2 is incremented every 12 or 24 clock cycles depending on the prescaler. The prescaler mode is selected by bit "t2ps" of "t2con" register when "t2ps"=0, the timer counts up every 12 clock cycles, otherwise every 24 cycles.

(b) Timer2 as one event counter

This mode is invoked by setting the "t2i0"=0 and "t2i1"=1 flags of "t2con" register. In this mode the Timer 2 is incremented when external signal "t2" changes its value from 1 to 0. The "t2" input is sampled at every rising edge of the clock. The Timer 2 is incremented in the cycle following the one in which the transition was detected. The maximum count rate is ½ of the clock frequency.

(c) Timer2 as one gated timer


This mode is invoked by setting the "t2i0"=1 and "t2i1"=1 flags of "t2con" register. In this mode the Timer 2 is incremented every 12 or 24 clock cycles (depending on "t2ps" flag) but additionally it is gated by

external signal "t2". When "t2"=0, the Timer 2 is stopped. The "t2" input is sampled into a flip-flop and then it blocks the Timer 2 incrementation.

(2) Compare mode

Any one of four. cocahx, cocalx bits are '10' will launch the compare function of Timer2. The below chart shows the block-diagram of compare function:

* Only for CRC

Figure 6-7: Compare Function of Timer2

The Compare Mode 0 is invoked by setting bit "t2cm"=0 of "t2con" register. When the value in Timer 2 equals the value of the compare register, the comparator output changes from low to high. It goes back low on timer 2 overflow. The port CO[0], CO[1], CO[2] and CO[3] are the compare outputs.

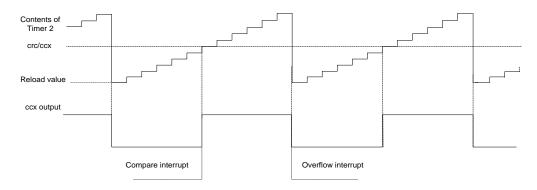


Figure 6-8: Compare Output of CO[0], CO[1], CO[2] and CO[3]

Release: Mar, 2013 - 48 / 110 - Rev.04

7. Energy Measurement

7.1 Block diagram

One of the most important functions of PL8331 is energy measurement. It can provide the information of the VRMS, IRMS, Active Power, Line frequency, etc. This section will describe how to use this function including the initialization, settings, and getting information. One hardware DSP is dedicated for energy measurement inside the PL8331. The simplified architecture of the HW DSP is shown below. There is no need to pay much attention to the internal design since all the metering measurement tasks are handled by the HW DSP.

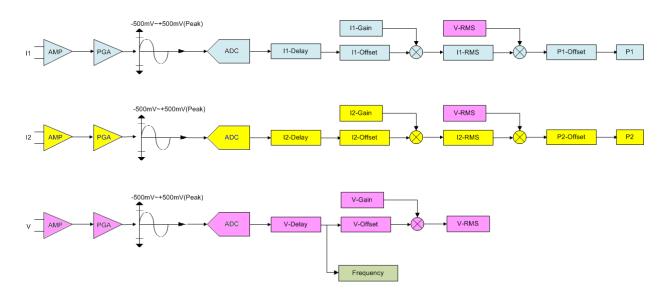


Figure 7-1: Energy Measurement Block diagram

7.1.1 Initialize HW DSP

Only need to use one bit setting to reset the HW DSP to restore the DSP to default setting.

PWRLV Co	PWRLV Control Registers - Indirect Accessing				
Address: PWRLVINDEX(CEh) / Data: PWRLVDATA(CFh)					
SFR-CEh	SFR-CFh	Bits	Description		
10h	METER_CTL0	7:0	Default : 0x00	Access : R/W	
	DSP_SWRESET	0	Software Reset for meter DSP, high active		

Table 7-1: DSP Software Reset

Set the Clock of the HW DSP. The operation clock of the HW DSP is configurable. It is set by changing the divider of the PLL clock. To get good accuracy, follow these settings:

Normal Mode: 1M

Neutral Missing Mode: 256K

PADs Fun	PADs Function Control Registers - Indirect Accessing				
Address:	Address: PAD_FUNCTION_INDEX(9Eh) / Data: PAD_FUNCTION_DATA(9Fh)				
SFR-9Eh	SFR-9Fh	Bits	Description		
02h	DIVPM_SELECT	7:0	Default : 0x07	Access : R/W	
	DIVPM_SELSEL[7:0]	7:0	meter clock source selection 0x00: bypass; 0x01: divide by 2; 0xFF: divide by 256;	on	

Table 7-2: Meter Clock Source Selection

7.1.2 Indirect Accessing

To access DSP internal registers for the majority of energy measurements, indirect accessing way is used due to the space limitation of SFRs. The MADDPT register is for indirect access to internal DSP registers. MDATX, MDATL, MDATM and MDATH are data registers for reading and writing data.

SFR Regis	ters		
Address	Mnemonic	ic Description	
ABh	MADDPT	Meter Address	
ACh	MDATX	Meter Data, Ext Byte	
ADh	MDATL	Meter Data, Low Byte	
AEh	MDATM	Meter Data, Middle Byte	
AFh	MDATH	Meter Data, High Byte	
B1h	WAVL	Meter WAV, Low Byte	
B2h	WAVM	Meter WAV, Middle Byte	
B3h	WAVH	Meter WAV, High Byte	
B4h	WAV2L	Meter WAV2, Low Byte	
B5h	WAV2M	Meter WAV2, Middle Byte	
B6h	WAV2H	Meter WAV2, High Byte	
BCh	WAV3L	Meter WAV3, Low Byte	
BDh	WAV3M	Meter WAV3, Middle Byte	
BEh	WAV3H	Meter WAV3, High Byte	

Table 7-3: DSP Internal Registers

Release: Mar, 2013 - 50 / 110 - Rev.04

7.1.3 Writing to the DSP core Registers

When bit 7 of MADDPT SFR is set, the content of the MDATx SFRs is transferred to the DSP core. Because DSP core and MCU core are in different clock domain, when data is written to the DSP core registers, a small wait period needs to be implemented before another read or write to these registers can take place.

```
MDATH = DataH;

MDATM = DataM;

MDATL = DataL;

MDATX = DataX;

Delay(5);

MADDPT = Addr|0x80;
```

7.1.4 Reading the DSP core Registers

When bit 7 of MADDPT SFR is cleared, the content of the DSP registers designed by the address in MADDPT is transferred to the MDATx SFRs. Because DSP core and MCU core are in different clock domain, when data is read from the DSP core registers, a small wait period needs to be implemented before the MDATx SFRs are transferred to another SFR.

```
MADDPT = Addr;

Delay(5);

*DataH = MDATH;

*DataL = MDATL;

*DataM = MDATM;

*DataX = MDATX;
```

7.1.5 Analog Inputs

PL8331 has three fully differential ADC input channels. In meter application, one is for AC voltage signal (ex: voltage channel), the others are for current signal input (ex: current channel). The voltage channel signal can come from PT or direct input from line voltage by attenuator. The current channel signal can come from current transformers, shunts or di/dt current sensor. The maximum differential input range to ADC channel is $\pm 0.5 \text{V}(\text{PGA gain}=1)$.

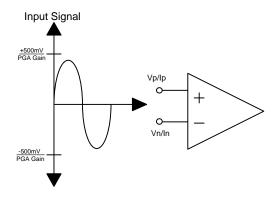


Figure 7-2: Analog Inputs

Each ADC input channel has a programmable gain amplifier (PGA) with gain selection of 1, 2, 4, 8, 16, 24 and 32. Below shows the block diagram of meter measurement:

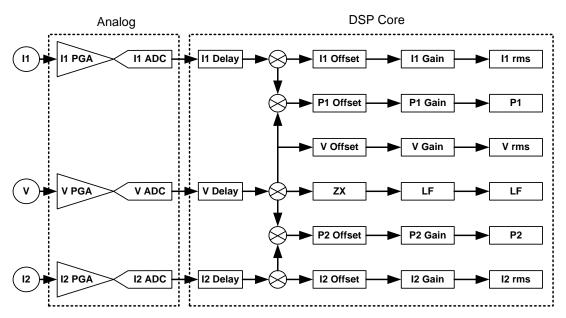


Figure 7-3: Block Diagram of Meter Measurement

ADC setting

Once the meter clock is set, a required setting is the number of ADC clocks per second in register 0x01[21:0]

DSP Control Registers - Indirect Accessing					
Address: MADP / Data: MDATH/MDATM/MDATL/MDATX					
SFR-ABh	SFR-AFh/AEh/ADh/ACh	h/ADh/ACh Bits Value Description			
01h				Default : 400DA7A6	Access : RO
	NO_CLKS_1SEC	21:0	894886	Number of ADC clocks per	second.
			(decimal)	Default is 894886Hz.	

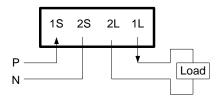
Table 7-4: ADC Clock Setting

Release: Mar, 2013 - 52 / 110 - Rev.04

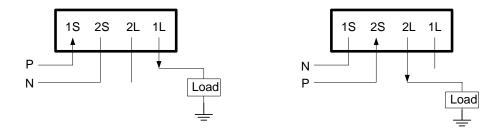
If the Meter Clock is 1M, then the setting of DSP register 0x01 [21:0] is 1024000 = 0xFA000.

DSP core

PL8331 embeds hardware digital signal processor to calculate energy data. The DSP core can provide power information as follows:


- 1. Active, Re-active and Apparent energy power
- 2. Voltage and current RMS value
- 3. Power factor, Line frequency

The DSP also provides some events for MCU to identify status like current fault event, zero-crossing event, no load event and SAG event.


Fault Detection

In normal operating condition, phase and neutral current should be equaled. A fault condition is defined when the difference between I1 and I2 is greater than the threshold of the active channel, the DSP automatically switch current measurement to the inactive channel. On power-up, I1 is the current input selected for calculation.

Normal condition in application:

Tampering:

To understand if fault condition happens, the DSP continues to monitor both current input channels, and provide 2 methods to determine fault event by comparing current value(Irms) and energy power value (active power).

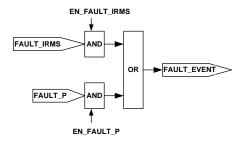


Figure 7-4: Fault Detection

7.2 Calibration method

7.2.1 Calibration Point

To achieve good performance, calibration for each meter is needed. Do the calibration at some specific conditions for different parameters.

Condition	Power Source	Purpose
Normal	240V, 5A, PF=0.5L	V-Gain, I1-Gain, I2-Gain, I1-Delay, I2-Delay
(Must)		Check by CF pulse
Small Current	240V, 10mA, PF=1	Calibrate I1-Offset and I2-Offset
(Option)		Check by reading I1RMS and I2RMS
Small Power	240V, 250mA, PF=1	Calibrated P1-Offset and P2-Offset
(Option)		Check by CF pulse

Table 7-5: Calibration at Some Specific Conditions for Different Parameters

There are 2 possible interfaces to do the calibration, JTAG and UART. For JTAG interface, it is done by the software with one JTAG calibration board to communicate with the meter, and then, with the auto-calibration algorithm in software. The calibration using UART interface is described in next section.

7.2.2 Calibration with UART Interface

To do the calibration via UART interface, the UART command parser is implemented in meter's firmware based on predefined protocol. The UART application will provide the source information to the meter via UART interface. Then the IC will do the auto calibration by firmware.

Release: Mar, 2013 - 54 / 110 - Rev.04

7.3 Analog PGA/ Digital Gain

7.3.1 Settings

To use the function of energy measure, the following settings is needed:

(1) Enable the ADC Channel

Originally, the 3 ADC channels are disabled. It must be enabled in order to measure the analog input of each channel. The related registers and sample codes are shown as follows:

PWRLV Control Registers - Indirect Accessing							
Address: PWRLVINDEX(CEh) / Data: PWRLVDATA(CFh)							
SFR-CEh	SFR-CFh	Bits	Description				
2Eh	ANA_PD0	7:0	Default : 0xFE	Access : R/W			
		7	I2 ADC power down				
		6:3	I1 ADC power down				
		2	I1 ADC input buffer power down				
		1	I1 ADC power down				
2Fh	ANA_PD1	7:0	Default : 0xFF	Access : R/W			
		7	V ADC power down When one of the V_ADC_PD is set , V ADC will power down				
		6	V ADC input buffer power down				
		5	V ADC power down When one of the V_ADC_	V ADC power down When one of the V_ADC_PD is set , V ADC will power down			
		4:1	I2 ADC power down				
		0	I2 ADC input buffer power	r down			
30h	ANA_PD2	7:0	Default : 0x07 Access : R/W				
		7:3	Reserved				
		2:0	V ADC power down				

Table 7-6: ADC SFR

To enable 3 ADC channels: 0x2E = 0x00; 0x2F = 0x00; 0x30 = 0x00;

7.3.2 Set the PGA Gain Settings

To set individual PGA gain for each channel:

PWRLV Co	PWRLV Control Registers - Indirect Accessing						
Address: PWRLVINDEX(CEh) / Data: PWRLVDATA(CFh)							
SFR-CEh	SFR-CFh	Bits	Description				
21h	ANA_CTL0	7:0	Default : 0x00 Access : R/W				
	7:4 I2 channel gain setting		X4 /0110: x8 /1110: x16 /1011: x24 short to VGND				
		3:0	I1 channel gain setting 0000:x1 /0001:x2 /0101: /1111: x32 , others : Input	X4 /0110: x8 /1110: x16 /1011: x24 short to VGND			
22h ANA_CTL1 7:0 Default : 0x90		Default : 0x90	Access : R/W				
		3:0	V channel gain setting 0000:x1 , others : x2				

Table 7-7: PGA Gain SFR

Set the PGA Gain of V: 0x 22 = 0x91; Set the PGA Gain of I1 and I2: 0x21 = 0x1

7.3.3 Set the Digital Gain

There are 20 bits for each digital gain and the default value is 0x8000. During the calibration, adjust the digital gain. Usually, the calibrated parameters are stored in external EEPROM (or internal flash). Then, read and set parameters to the related DSP registers.

Digital Gain DSP Register

Digital Gain	DSP Register
V Channel	0x0E[3:0], 0x03[15:0]
I1 Channel	0x0E[7:4], 0x04[15:0]
I2 Channel	0x0E[11:8], 0x05[15:0]

DSP Contr	DSP Control Registers - Indirect Accessing						
Address: N	Address: MADP / Data: MDATH/MDATM/MDATL/MDATX						
SFR-ABh	SFR-AFh/AEh/ADh/ACh	Bits	Value	Description			
03h		31:0		Default : 0xA3808000	Access : RO		
	ADC_GAIN_V[15:0]	15:0	8000h	Sets gain for V channel.			
				Bit [15] corresponds to unit g	ain.		
04h		31:0		Default : 0xC1808000	Access : RO		
	ADC_GAIN_I1[15:0]	15:0	8000h	Sets gain for I1 channel.			
				Bit [15] corresponds to unit g	ain.		
05h		31:0		Default : 0x41808000h	Access : RO		
	ADC_GAIN_I2[15:0]	15:0	8000h	Sets gain for I2 channel.			
				Bit [15] corresponds to unit g	ain.		
0Eh		31:0		Default : 0x80000000	Access : RW		
	ADC_GAIN_I2[19:16]	11:8	0	Sets gain for I2 channel.			
	ADC_GAIN_I1[19:16]	7:4	0	Sets gain for I1 channel.			
	ADC_GAIN_V[19:16]	3:0	0	Sets gain for V channel.			

Table 7-8: Digital Gain SFR

7.4 Phase Compensation

The PL8331 must work with transducers that can have inherent phase errors. For example, a phase error of 0.1° to 0.3° is not uncommon for a current transformer (CT). These phase errors can vary from part to part, and must be corrected to perform accurate power calculations. The errors associated with phase mismatch are particularly noticeable at low power factors. The PL8331 provide a means for digitally calibrating these small phase errors. The part allows a small time delay or time advance to be introduced into the signal processing chain to compensate for small phase errors. Because the compensation is in time, this technique should be used only for small phase errors in the range of 0.1° to 0.5°. Correcting large phase errors using a time shift technique may introduce significant phase errors at higher harmonics.

The phase calibration register (PHCAL[7:0], Address 0x10) is a twos complement, signed, single-byte register that has values ranging from 0x82 (-126d) to 0x68 (+104d). The PHCAL register is centered at 0x40, meaning that writing 0x40 to the register gives 0 delay. By changing this register, the time delay in the voltage channel signal path can change from $-231.93~\mu s$ to $+48.83~\mu s$ (MCLK = 4.096~MHz). One LSB is equivalent to a 1.22 μs (4.096~MHz/5) time delay or advance. A line frequency of 60 Hz gives a phase resolution of 0.026° at the fundamental (that is, $360° \times 1.22~\mu s \times 60~Hz$).

Due to the part to part variation between current sensor and the components of anti-aliasing filter (LPF). These phase errors must be corrected to perform accurate power calculations. DSP core provide a means of digitally calibrating these phase errors, and the maximum range will depend on ADC clock selection.

For example:

If ADC input clock is 819.2KHz, and line frequency is 60Hz, then the maximum range will be 6.724°.

(1/819.2K)/(1/60)*360=0.02637°

0.02637°*255(Delay code)=6.724°

7.5 RMS

7.5.1 Enable the Calculation of the RMS of Each Channel

Item	DSP Register
Enable the calculation of RMS for V	0x03[26]
Enable the calculation of RMS for I1	0x04[26]
Enable the calculation of RMS for I2	0x05[26]

DSP Control Registers - Indirect Accessing
Address: MADP / Data: MDATH/MDATM/MDATL/MDATX

SFR-ABh	SFR-AFh/AEh/ADh/ACh	Bits	Value	Description	
03h		31:0		Default : 0xA3808000	Access : RO
	EN_RMS_V_sw	26	0	Enables the calculation of RM	MS for V by finding the
				square root of the average of	V*V.
04h		31:0		Default : 0xC1808000	Access : RO
	EN_RMS_I1_ii_sw	26	0	Enables the calculation of the	wide-band RMS for I1
				by finding the square root of t	he average of I1*I1.
05h		31:0		Default : 0x41808000h	Access : RO
	EN_RMS_I2_ii_sw	26	0	Enables the calculation of the	wide-band RMS for I2
				by finding the square root of	he average of I2*I2.

Table 7-9: RMS Control SFR

7.5.2 Performance Setting

Item	DSP Register
Enable the Double HPF	0x01[24, 23]
Enable the SINC filter for V	0x03[24]
Enable the SINC filter for I1	0x04[24]
Enable the SINC filter for I2	0x05[24]
enable the SINC compensation filter	0x23[15]
Enable the HPF filter in V, I1 and I2 channel	0x26[26, 25, 24]

DSP Control Registers - Indirect Accessing

Address: MADP / Data: MDATH/MDATM/MDATL/MDATX

SFR-ABh	SFR-AFh/AEh/ADh/ACh	Bits	Value	Description	
01h		31:0		Default : 0x400DA7A6	Access : RO
	HPF_sel	24	0	Select the cutoff frequency of	HPF. The higher
				HPF_SEL, the higher cutoff for	requency.
				0: suggested for 819.2 kHz A	DC clock and
				decimation factor 64.	
				1: cutoff frequency doubled.	
	VI_LPF_sel	23	0	Select the cutoff frequency fo	r the LPF after the
				multiplications of V and I. The	e higher VI_LPF_SEL,
				the larger the bandwidth.	
				0: suggested for 819.2 kHz A	DC clock and
				decimation factor 64.	
				1: cutoff frequency doubled.	
03h		31:0		Default : 0xA3808000	Access : RO
	EN_PWR_HPF_V	24	1	If set to 1, DC-removed V is a	used for the calculation
				of active power and RMS.	
04h		31:0		Default : 0xC1808000	Access : RO
	EN_PWR_HPF_I1	24	1	If set to 1, DC-removed I1 is a	used for the calculation
				of active power and RMS.	
05h		31:0		Default : 0x41808000h	Access : RO
	EN_PWR_HPF_I2	24	1	If set to 1, DC-removed I2 is u	used for the calculation
				of active power and RMS.	

23h		31:0		Default : 0x87033000	Access : R/W
-----	--	------	--	----------------------	--------------

	EN_COMP	15	0	Setting this bit enable the SIN	NC compensation filter.
26h		31:0		Default : 0x00090000	Access : R/W
	EN_HPF_V_sw	26	0	Setting this bit enables the H	PF in V channel.
	EN_HPF_I1_sw	25	0	Setting this bit enables the H	PF in I1 channel.
	EN_HPF_I2_sw	24	0	Setting this bit enables the H	PF in I2 channel.

Table 7-10: RMS Performance Setting SFR

7.5.3 Get the Information

The output of the hardware DSP is stored in the DSP registers. Following is the table indicating the index.

Items	Register
VRMS	0x50[31:0]
I1RMS	0x68[31:0]
I2RMS	0x69[31:0]
PF1	0x5E[31:0]
PF2	0x5F[31:0]
Active Power1	0x58[31:0]
Active Power2	0x59[31:0]
Line Frequency	0x49[31:0]

DSP Control Registers - Indirect Accessing
Address: MADP / Data: MDATH/MDATM/MDATL/MDATX

SFR-ABh	SFR-AFh/AEh/ADh/ACh	Bits	Value	Description	
49h		31:0		Default : 0x00000000	Access : RO
		31:26	0	Reserved	
	LINE_FREQ[25:2]	25:2			
		1:0	0	Reserved	
50h		31:0		Default : 0x00000000	Access : RO
	RMS_V	31:0	0	Voltage channel RMS. Scale	d by ADC_GAIN_V.
58h		31:0		Default : 0x00000000	Access : RO
	P1	31:0	0	Active power for I1. Scaled b	y ADC_GAIN_V / I1.
59h		31:0		Default : 0x00000000	Access : RO
	P2	31:0	0	Active power for I2. Scaled b	y ADC_GAIN_V / I2.
5Eh		31:0		Default : 0x00000000	Access : RO

DSP Co	DSP Control Registers - Indirect Accessing								
Address	Address: MADP / Data: MDATH/MDATM/MDATL/MDATX								
	PF1 31:0 0 Power factor derived from V and I1.								
5Fh		31:0		Default: 0x00000000 Access: RO					
	PF2	31:0	0	Power factor derived from V	and I2.				
68h		31:0		Default : 0x00000000	Access : RO				
	RMS_I1_ii	31:0	0	Current RMS of I1 derived for					
69h	Scaled by ADC_GAIN_I1. (Wide-band.) 31:0 Default: 0x00000000 Access: RO								
	RMS_I2_ii	31:0	0	Current RMS of I2 derived from I2 * I2. Scaled by ADC_GAIN_I2. (Wide-band.)					

Table 7-11: ADC, V, I1 and I2 Registers

All the data is stored with 4 bytes format of DataH[31:24], DataM[23:16],DataL[15:8], DataX[7:0]. The 4 bytes sent by the metering units are the priority format defined as below:

Floating point format (Ignore the DataX and use 3 bytes only)

Hence, the range of the output value will be -2~1.9999999. Multiply the constant for the output value to make the output value in proper page.

Energy Type	Constant
Voltage	1500
Current	200
Active Power	300000
Line Frequency	16384 (2 ¹⁴)

To make the computation easier, PL8331 provides the hardware computation to convert the raw data to BCD format.

7.6 Meter Constants

The meter requires constants based on the voltage and current transformers/shunts. The following describes how to calculate the PL8331 meter constants.

Under the setting of Meter Clock = 1M,

CF1_DEN =0xEF; // Fixed Value

Meter Constant =6400: CF1_PWRGain =0x2000

Meter Constant =3200: CF1_PWRGain =0x4000

Meter Constant =1600: CF1_PWRGain =0x8000

7.7 Active Power No Load Detection

The PL8331 includes a no load threshold feature on the active power that eliminates any creep effects in the meter. The part accomplishes this by not accumulating energy if the multiplier output is below the no load threshold. When the active power is below the no load threshold, the APNOLOAD flag (Bit 0) in the Interrupt Status 1 SFR (MIRQSTL, Address 0x A5h) is set.

A4h	MIRQSTX	Meter Interrupt Status, Ext Byte				
A5h	MIRQSTL	Meter Interrupt Status, Low Byte				
A6h	MIRQSTM	Meter Interrupt Status, Middle Byte				
A7h	MIRQSTH	Meter Interrupt Status, High Byte				

If the APNOLOAD bit (Bit 0) is set in the Interrupt Enable 1 SFR (MIRQENL, Address 0x95), the 8052 core has a pending interrupt. The interrupt stays active until the APNOLOAD status bit is cleared (see the Energy Measurement Interrupts section).

95h	MIRQENL	Meter Interrupt Enable, Low Byte			
96h	MIRQENM	Meter Interrupt Enable, Middle Byte			
97h	MIRQENH	Meter Interrupt Enable, High Byte			

8. Interfaces

The structure of the peripherals and blocks consists of:

- **PORTS** parallel I/O port controller, serves 4 parallel 8-bit I/O ports to be used in combination with off-core buffers, compatible to classic 80C51, but without multiplexed memory feature and without alternate functions.
- **UART0** contains a Serial Port 0, a flexible synchronous/UART controller compatible with standard 80C51 serial port, and with additional baud rate generator.
- **MDU** Multiplication-Division Unit, provides fast extended arithmetic operations like 16-bit multiplication, 32-bit division, shifting and normalizing.
- **WATCHDOG** system supervisor, generating microcontroller reset when not refreshed in specified time.
- **ISR** Interrupt Service Routine, provides 80515-like interrupt enable and priority registers, priority decoder and interrupt vector generation.
- **OCDS** JTAG debug port, provides development functions such as run/stop/step control and software/hardware breakpoints of program execution.
- I2C provides a flexible master slave I2C interface
- **SPI** provides a flexible master slave SPI interface
- FLASH CONTROLLER provides FLASH access and security protection

8.1 **GPIO**

The I/O pin of PL8331 could be used as GPIO or different functions by the software settings and configurations. Here describes the concepts of the software control PAD and how to use it in the application. For example, PAD_DIO18 as TX0 and DIO19 as the RX0. The diagram is shown below.

The I/O functions are controlled by indirect registers via SFR address D4h and D5h as shown in following table.

SFR	Mnemonic	Bits	Description			
D4h	PAD_GPIO_INDEX	7:0	Default : 0x00	Access : R/W		
	PAD_WE_EN	7	Register Write Enable			
			1: enable to write Indirect register			

SFR	Mnemonic	Bits	Description		
	PAD_GPIO_ADDR	6:0	Register Address Port		
D5h	PAD_GPIO_DATA	7:0	Default : 0x00 Access : R/W		
	PAD_GPIO_DATA	7:0	Register DATA Port		

Example:

Set DIO18 as UART_TX0 function and DIO19 as RX0, follow the table and steps below:

	PADs GPIO Control Registers - Indirect Accessing							
	Address: PAD_GPIO_INDEX(D4h) / Data: PAD_GPIO_DATA(D5h)							
SFR-D4h	D4h SFR-D5h Bits Description							
05h	PAD_DIO21_16_SW_ENABLE	7:0	Default : 0xFF	Access : R/W				
	PAD_DIO19_SW_EN	3	Software control enable					
	PAD_DIO18_SW_EN	2	1 = PAD_DIO16~PAD_DI 0 = Disable digital GPIO t [5:4] Reserved					
09h	PAD_DIO21_16_INTPUT_DISABLE	7:0	Default : 0xF3	Access : R/W				
	PAD_DIO19_IN_DIS	3	1 = Disable input function	of PAD_DIO16 ~				
	PAD_DIO18_IN_DIS	2	PAD_DIO21 0 = Enable					
			[5:4] Reserved					

1. Switch 1st MUX by setting PAD_DIO18/19_SW_EN and IUPUT DIS bit

PAD_GPIO_INDEX=0x85 //bit 7=1 to enable write accessing

PAD_GPIO_DATA&=(~0xC0)

 $PAD_GPIO_INDEX = 0x89;$

PAD_ GPIO_DATA &= $(\sim 0 \times 08)$;

PAD_ GPIO_DATA |= 0x04;

2. Switch 2nd MUX by setting Function

PAD_FUNCTION_INDEX = 0x85;

PAD_FUNCTION_DATA |= 0x11; //Set PAD_DIO19 as Rx0 , PAD_DIO18 as Tx0

Product Data Sheet PL8331

SFR	Mnemonic	Bits	Description		
9Eh	PAD_FUNCTION_INDEX	7:0	Default : 0x00	Access : R/W	
	PAD_FUNCTION_WE_EN	7	Register Write Enable		
			1: enable to write Indirect register		
	PAD_FUNCTION_ADDR	6:0	Register Address Port		
9Fh	PAD_FUNCTION_DATA	7:0	Default : 0x00 Access : R/W		
	PAD_FUNCTION_DATA	7:0	Register DATA Port		

05h	PAD_DIO19_18_FUNC_CTL	7:0	Default : 0x00	Access : R/W
	FUNC_PAD_DIO19[1:0]	5:4	PAD_DIO19 function	
			00: Disable	
			01: UART_RX0,	
			10: P1.2	
	FUNC_PAD_DIO18[1:0]	1:0	PAD_DIO18 function	
			00: Disable	
			01: UART_TX0,	
			10: P1.1	

8.2 **UARTO**

The UART0 provides a flexible full-duplex synchronous/asynchronous receiver/transmitter. It can operate in four modes.

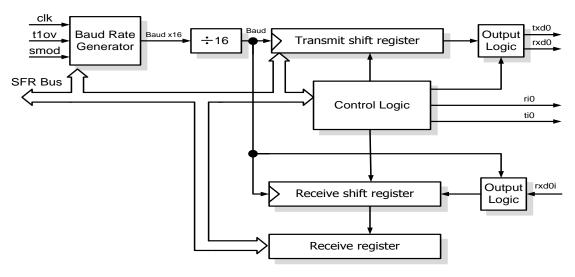


Figure 8-1 : Block Diagram of UART0

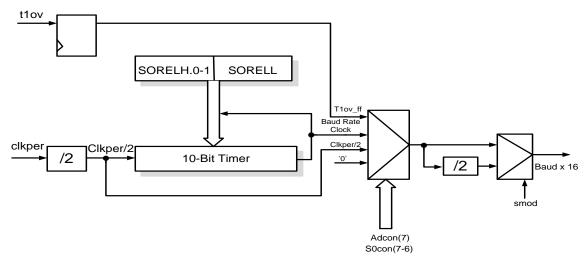


Figure 8-2: Baud Rate Generator of UART0

mode	SYNCH/ASYNCH	START/STOP	DATA BITS	9 [™] BIT	SM0, SM1
				FUNCTION	
0	SYNCH	none	8	none	
1	ASYNCH	1 start , 1 stop	8	none	
2	ASYNCH	1 start , 1 stop	9	0 ,1 , parity	
3	ASYNCH	1 start , 1 stop	9	0,1 , parity	

Table 8-1: Modes of UART0

Release: Mar, 2013 - 66 / 110 - Rev.04

8.2.1 MODE 0

In mode 0 the Serial Port 0 operates as synchronous transmitter/receiver. The "txd0" outputs the shift clock. The "rxd0o" outputs data and the "rxd0i" inputs data. 8 bits are transmitted with LSB first. The baud rate is fixed at 1/12 of the CLKmcu frequency. Reception is started by setting the "ren0" = 1 flag "s0con" register, and clearing the "ri0"flag. Transmission is started by writing data to "s0buf" register.

8.2.2 MODE1

In Mode 1, the baud rate is a function of timer overflow. This makes the baud rate programmable by the user depending on the setting of "bd" bit of "adcon" register, either Timer 1 overflow or "s0relh", "s0rell" baud rate generator is used. Additionally the baud rate can be doubled with the use of the "smod" bit of the "pcon" register. Transmission is started by writing to the "s0buf" register. The "txd0" pin outputs data. The first bit transmitted is a start bit (always 0), then 8 bits of data proceed, after which a stop bit (always 1) is transmitted.

8.2.3 MODE2

In Mode 2, the Serial Port 0 operates as asynchronous transmitter/receiver with 9 data bits and baud rate fixed Fclkper/32 or Fclkper/64, depending on the setting of "smod" bit of "pcon" register This mode is an asynchronous mode that transmits a total of 11 bits. These include 1 start bit, 9 data bits (the ninth data bit being programmable), and 1 stop bit.

8.2.4 MODE3

This mode has the same functionality as Mode 2, but generates baud rates like Mode 1. That is, this mode transmits 11 bits, but generates baud rates via the timers. Additionally the baud rate can be doubled with the use of the "smod" bit of the "pcon" register.

sm0	sm1	mode	Baud rate				
0	0	Mode 0	Baud rate =Clkmcu/12				
0	1	Mode 1	Depend on bd (adcon.7)				
			bd = 0	Baud rate	=		
				$\frac{2^{SMOD} * Fclk}{32} * (Timer 1 _ overflow _ rate)$			
			$bd = 1 2^{SMOD} * Fclk$				
				$64*(2^{10}-s0rel)$			
1	0	Mode 2	Depends on smod (pcon.7) value				
			smod=0	Fclk/64			
			Smod=1	Fclk/32			
1	1	Mode 3	Depend on bd (adcon.7)				
			bd = 0	Baud rate	=		

		$\frac{2^{SMOD} * Fclk}{32} * (Timer 1 _ overflow _ rate)$
	bd = 1	$\frac{2^{SMOD} * Fclk}{64 * (2^{10} - s0rel)}$

Table 8-2: Baud Rate of UART0

Notes:

smod (pcon.7) – Serial Port 0 baud rate select flag s0rel – the contents of S0REL registers (s0relh, s0rell) bd (adcon.7) – the MSB of ADCON register

UART0 Register (SFR Register - 98h~99h/AAh/BAh/D8h)

Address	Mnemonic	Bits	Description	Description		
98h	SOCON	7:0	Default : 0x00	Access : R/W		
	sm0	7	Serial port mode select			
			[sm0 , sm1]			
	sm1	6	= '00' : mode 0			
			= '01' : mode 1			
			= '10' : mode 2			
			= '11' : mode 3			
	NC	5	No use			
			FIXED ZERO			
	ren0	4	Serial reception enable			
			If set HIGH serial reception	at Serial Port 0 is enabled.		
			Otherwise serial reception at Serial Port 0 is disabled.			
	tb80	3	Transmitter bit 8			
			This bit is used while transmitting data through Serial Port 0			
			in Modes 2 and 3. The sta	ate of this bit corresponds with the		
			state of the 9th transn	nitted bit (e.g. parity check or		
			multiprocessor communica	tion). It is controlled by software.		
	rb80	2	Received bit 8			
			This bit is used while rece	iving data through Serial Port 0 in		
			Modes 2 and 3. It reflects t	he state of the 9th received bit.		
			In Mode 1, if multiprocesso	or communication is enabled (sm20		
			= 0), this bit is the stop bit	that was received).		
			In Mode 0 this bit is not us	ed.		

Address	Mnemonic	Bits	Description		
	ti0	1	Transmit interrupt	flag	
			It indicates completion of a serial transmission at Serial Po		
			0.		
			It is set by hardware at the end of bit 8 in mode 0 or at th		
			beginning of a stop bit in other modes. It must be cleared by software.		
	ri0	0	Receive interrupt	flag	
			It is set by hardwar	e after	completion of a serial reception at
			Serial Port 0.		
			It is set by hardwa	re at th	e end of bit 8 in mode 0 or in the
			middle of a stop bit	in othe	r modes.
			It must be cleared b	by softw	/are
99h	S0BUF	7:0	Default : 0x00		Access : R/W
	SOBUF	7:0	Serial port 0 Data	Buffer	
			Writing data into thi	s regist	er will start to transmit UART0
			Reading from the S0BUF reads data from the serial		reads data from the serial receive
			buffer		
AAh	S0RELL	7:0	Default : 0XD9		Access : R/W
	SORELL	7:0	Low byte of Serial	Port 0	Reload Register
			Serial Port 0 Reloa	ıd Regi	ster is used for Serial Port 0 baud
			rate generation		
BAh	S0RELH	7:0	Default : 0x03	Acces	ss : R/W
	NU	7:2	NO USE		
	SORELH[1:0]	1:0	High byte of Serial Port 0 Reload Register		Reload Register
D8h	ADCON	7:0	Default : 0x00 Access : R/W		Access : R/W
	bd	7	Serial Port 0 baud rate select (in modes 1 and 3) When 1, additional internal baud rate generator is used otherwise Timer 1 overflow is used		ect (in modes 1 and 3)
					nal baud rate generator is used,
					is used
	NU	6:0	NO USE		

Table 8-3: UART0 SFR

8.3 MDU

The MDU (Multiplication-Division Unit) is an on-chip arithmetic co-processor which enables the PL8331 to perform additional extended arithmetic operations. This unit provides 32-bit division, 16-bit multiplication, shift and normalize operations. All operations are unsigned integer operations. The MDU is handled by seven registers, which are memory mapped as Special Function Registers. The arithmetic unit allows performing operations concurrently to and independent of the CPU's activity. Operands and results are stored in "md0" to "md5" registers. The module is controlled by the "arcon" register. Any calculation of the MDU overwrites its operands.

The operation of the MDU consists of three phases:

- (a) writing the mdx registers there are total four MDU operations: "32bit/16bit", "16bit/16bit", "16bit*16bit", shifting and normalizing. MDU registers write sequence determine which operation will execute.
- (b) executing every operation has its own executing cycle time.
- (c) readout the result every operation has its own read out sequence.

Write sequence	32bit/16bit	16bit/16bit	16bit * 16bit	shift normalizing
meaning	[md3,md2,md1,md0]	[md1,md0] /	[md1,md0]*[md5,md4]	[md3,md2,md1,md0]
	/ [md5,md4]	[md5,md4]	Where md0, md4 are	Where md0 is LSB
	Where md0, md4 are	Where md0, md4 are	LSB	
	LSB	LSB		
1 st write	Md0	Md0	Md0	Md0
2 nd write	Md1	Md1	Md4	Md1
3 rd write	Md2	Md4	Md1	Md2
4 th write	Md3	Md5	Md5	Md3
5 th write	Md4			arcon
6 th write	Md5			

Table 8-5: Writing Sequence of MDU Registers for Different Operation

operation	Number of clock cycles				
32bit/16bit	17 clock cycles				
16bit/16bit	9 clock cycles				
16bit * 16bit	11 clock cycles				
shift	min 3 clock cycles (sc = 01h) max 18 clock cycles (sc = 1Fh)				
normalizing	min 4 clock cycles (sc <- 01h) max 19 clock cycles (sc <- 1Fh)				

Table 8-6: Executing Cycle Time of MDU

Release: Mar, 2013 - 70 / 110 - Rev.04

Read	32bit/16bit	16bit/16bit	16bit * 16bit	shift normalizing	
sequence					
meaning	[md3,md2,md1,md0]	[md1,md0]	[md3,md2,md1,md0]	[md3,md2,md1,md0]	
	is quotient	is quotient	is product	Where md0 is LSB	
	[md5,md4]	[md5,md4]	Where md0 is LSB		
	is remainder	is remainder			
	Where md0, md4 are	Where md0 ,			
	LSB	md4 are LSB			
1 st Read	Md0	Md0	Md0	Md0	
2 nd Read	Md1	Md1	Md1	Md1	
3 rd Read	Md2	Md4	Md2	Md2	
4 th Read	Md3	Md5	Md3	Md3	
5 th Read	Md4				
6 th Read	Md5				

Table 8-7: Readout-Result Sequence of MDU Registers for Different Operation

Normalizing operation

All leading zeroes of 32-bit integer variable stored in "md0" to "md3" registers (the latter contains the most significant byte) are removed by shift left operations. The whole operation is completed when the MSB (most significant bit) of "md3" register contains a '1'. After normalizing, bits "arcon.4" (MSB) ... "arcon.0" (LSB), contain the number of shift left operations which were done.

Shifting operation

In shift operation, 32-bit integer variable stored in "md0" to "md3" registers (the latter contains the most significant byte) is shifted left or right by a specified number of bits. The "slr" bit ("arcon.5") defines the shift direction, and bits "arcon.4" to "arcon.0" specify the shift count (which must not be 0). During shift operation, zeroes come into the left end of "md3" for shifting right or right end of the "md0" for shifting left.

MDU Register(SFR Register - E9h~EFh)

Address	Mnemonic	Bits	Description		
EFh	ARCON	7:0	Default : 0x00	Access : R/W	
	mdef	7	MDU Error flag MDEF		
			Indicates an improperly performed operation (when one		
			the arithmetic operations has been restarted or interrupted by		
			a new operation). MDU Overflow flag MDOV Overflow occurrence in the MDU operation		
	mdov	6			

Address	Mnemonic	Bits	Description	
	slr	5	Shift direction	
			slr = 0 - shift left operation.	
			slr = 1 - shift right operation	
	SC	4:0	Shift counter	
			When at least one of these	e bit is set, a high shift operation is
			selected. The number of	shifts performed is determined by
			the number written to "so	c.4" to "sc.0", where "sc.4" is the
			MSB.	
			When set to all '0's, norr	malize operation is selected. After
			normalization, the "sc.0"	"sc.4" contain(s) the number of
			normalizing shifts performe	ed.
E9h	MD0	7:0	Default : 0x00	Access : R/W
		7:0	Multiplication/Division Reg	ister 0
EAh	MD1	7:0	Default : 0x00	Access : R/W
		7:0	Multiplication/Division Reg	ister 1
EBh	MD2	7:0	Default : 0x00	Access : R/W
		7:0	Multiplication/Division Reg	ister 2
ECh	MD3	7:0	Default : 0x00	Access : R/W
		7:0	Multiplication/Division Register 3	
EDh	MD4	7:0	Default : 0x00	Access : R/W
		7:0	Multiplication/Division Register 4	
EEh	MD5	7:0	Default : 0x00 Access : R/W	
		7:0	Multiplication/Division Register 5	

Table 8-8: MDU SFR

8.4 Interrupt Pin(INT0/INT1/Others)

The interrupt control is 80515-like that has 4 priority levels and 18 interrupt sources. All interrupt requests are divided into 6 groups. If user do not use "IP0", "IP1" SFRs to change the priority of interrupt group. Every interrupt-group has its own natural priority. For example, Group0 has the highest natural priority.

Interrupt	Natural	Highest priority in	Middle priority in	Lowest priority in group
group	priority	group	group	
Group0	highest	Int_vect_03	Int_vect_83	Int_vect_43
		(External Interrupt 0)	(UART 1 interrupt)	(External Interrupt 7
				/ I2C interrupt)

Group1		Int_vect_0B	Int_vect_8B	Int_vect_4B
		(Timer 0 overflow)	(External Interrupt 8)	(External Interrupt 2
				/ SPI interrupt)
Group2		Int_vect_13	Int_vect_93	Int_vect_53
		(External Interrupt 1)	(External Interrupt 9)	(External Interrupt 3)
Group3		Int_vect_1B	Int_vect_9B	Int_vect_5B
		(Timer 1 overflow)	(External Interrupt 10)	(External Interrupt 4)
Group4		Int_vect_23	Int_vect_A3	Int_vect_63
		(UART0 interrupt)	(External Interrupt 11)	(External Interrupt 5)
Group5	lowest	Int_vect_2B	Int_vect_AB	Int_vect_6B
		(Timer 2 overflow)	(External Interrupt 12)	(External Interrupt 6)

Table 8-9: 18 Interrupt Sources, 6 Interrupt Group, and Natural Priority

Level	Priority	IP1.x bit	IP0.x bit
Level0	Lowest	0	0
Level1		0	1
Level2		1	0
Level3	Highest	1	1

Table 8-10 : Level of Interrupt Group

No	Interrupt	Interrupt	Interrupt request source	Trigger
	request	enable bit		condition
	input			
00	int_vect_03	ien0(0)	External Interrupt 0 (P00)	Low level / falling edge
01	int_vect_0B	ien0(1)	Timer 0 overflow	
02	int_vect_13	ien0(2)	External Interrupt 1 (P01~P07)	Low level / falling edge
03	int_vect_1B	ien0(3)	Timer 1 overflow	
04	int_vect_23	ien0(4)	UART0 interrupt	
05	int_vect_2B	ien0(5)	Timer 2 overflow	
06	int_vect_33			
07	int_vect_3B			
08	int_vect_43	ien1(0)	External Interrupt 7 / I2C interrupt	Rising edge
09	int_vect_4B	ien1(1)	External Interrupt 2 (P08~P15) /	Rising edge / falling edge
			SPI interrupt	(default falling edge)
10	int_vect_53	ien1(2)	External Interrupt 3 (IU3)	Rising edge / falling edge
				(default falling edge)
11	int_vect_5B	ien1(3)	External Interrupt 4 (RTC)	Rising edge

12	int_vect_63	ien1(4)	External Interrupt 5 (PM)	Rising edge
13	int_vect_6B	ien1(5)	External Interrupt 6 (Temperature)	Rising edge
14	int_vect_73			
15	int_vect_7B			
16	int_vect_83	ien2(0)	UART1 Interrupt	
17	int_vect_8B	ien2(1)	External Interrupt 8 (PWR)	Rising edge
18	int_vect_93	ien2(2)	External Interrupt 9 (IU4)	Rising edge
19	int_vect_9B	ien2(3)	External Interrupt 10 (SE37~SE41)	Rising edge
20	int_vect_A3	ien2(4)	External Interrupt 11 (BCD)	Rising edge
21	int_vect_AB	ien2(5)	External Interrupt 12	Rising edge

Table 8-11: Interrupt Source

All priority types are taken into account when more than one interrupt is requested. The most important is the priority level set by "ip0" and "ip1" registers, then the natural priority between groups, and at last the priority inside each group. To determine which interrupt has the highest priority (which must be serviced in the first order) the following steps are performed:

- 1. The group with the highest priority level among all the group is chosen.
- 2. Among those with the highest priority level, the group with highest natural priority between groups is chosen.
- 3. Within the group with highest priority, the interrupt with the highest priority inside the group is chosen.

ISR Register(SFR Register - A8/B8/9A/A9/B9/C0/BFh)

Address	Mnemonic	Bits	Description	Description		
A8h	IEN0	7:0	Default: 0x00 Access: R/W			
	eal	7	Interrupts enable			
			When set to 0 – all interrup	ots are disabled		
			Otherwise enabling each in	nterrupt is done by setting the		
			corresponding interrupt en	able bit		
	wdt	6	Watchdog timer refresh f	lag		
			Set to initiate a refresh of t	he watchdog timer. Must be set		
			directly before swdt (ien1.6	s) is set to prevent an unintentional		
			refresh of the watchdog tin	ner. The wdt bit is cleared by		
			hardware after the next ins	truction executed after the one		
			that had set this bit, so that	t watchdog refresh can be done		
			only with direct sequence of	of setting wdt and swdt.		

Address	Mnemonic	Bits	Description
	et2	5	Timer2 interrupt enable When et2=0 timer2 interrupt is disabled. When et2=1 and eal=1 timer2 interrupt is enabled.
	es0	4	Serial Port 0 interrupt enable When es0=0 Serial Port 0 interrupt is disabled. When es0=1 and eal=1 Serial Port 0 interrupt is enabled.
	et1	3	Timer1 overflow interrupt enable When et1=0 timer0 overflow interrupt is disabled. When et1=1 and eal=1 timer1 overflow interrupt is enabled.
	ex1	2	External interrupt 1 enable When ex1=0 external interrupt 1 is disabled. When ex1=1 and eal=1 external interrupt 1 is enabled
	et0	1	Timer0 overflow interrupt enable When et0=0 timer0 overflow interrupt is disabled. When et0=1 and eal=1 timer0 overflow interrupt is enabled.
	ex0	0	External interrupt 0 enable When ex0=0 external interrupt 0 is disabled. When ex0=1 and eal=1 external interrupt 0 is enabled.
B8h	IEN1	7:0	Default : 0x00 Access : R/W
	exen2	7	Timer2 external reload interrupt enable When exen2=0, timer2 external reload interrupt 2 is disabled. When exen2=1 and eal=1, timer2 external reload interrupt 2 is enabled.
	swdt	6	Watchdog timer start/refresh flag. Set to activate/refresh the watchdog timer. When set directly after setting wdt (ien0.6), a watchdog timer refresh is performed. This bit is immediately cleared by hardware.
	ex6	5	External interrupt 6 enable When ex6=0 external interrupt 6 is disabled. When ex6=1 and eal=1 external interrupt 6 is enabled.
	ex5	4	External interrupt 5 enable When ex5=0 external interrupt 5 is disabled. When ex5=1 and eal=1 external interrupt 5 is enabled.

Address	Mnemonic	Bits	Description		
	ex4	3	External interrupt 4 enab	le	
			When ex4=0 external inter	rupt 4 is disabled.	
			When ex4=1 and eal=1 ex	ternal interrupt 4 is enabled.	
	ex3	2	External interrupt 3 enab	le	
			When ex3=0 external inter	rupt 3 is disabled.	
			When ex3=1 and eal=1 ex	ternal interrupt 3 is enabled.	
	ex2	1	External interrupt 2 enab	le	
			When ex2=0 external inter	rupt 2 is disabled.	
			When ex2=1 and eal=1 ex	ternal interrupt 2 is enabled.	
	ex7	0	External interrupt 7 enab	le	
			When ex7=0 external inter	rupt 7 is disabled.	
			When ex7=1 and eal=1 ex	ternal interrupt 7 is enabled	
9Ah	IEN2	7:0	Default : 0x00	Access : R/W	
	NU	7:6	NO USE		
	ex12	5	External interrupt 12 ena	ble	
			When ex12=0 external inte	errupt 12 is disabled.	
			When ex12=1 and eal=1 external interrupt 12 is enabled.		
	ex11	4	External interrupt 11 ena	ble	
			When ex11=0 external inte	errupt 11 is disabled.	
			When ex11=1 and eal=1 e	xternal interrupt 11 is enabled.	
	ex10	3	External interrupt 10 ena	ble	
			When ex10=0 external inte	errupt 10 is disabled.	
			When ex10=1 and eal=1 e	xternal interrupt 10 is enabled.	
	ex9	2	External interrupt 9 enab	le	
			When ex9=0 external inter	rupt 9 is disabled.	
			When ex9=1 and eal=1 ex	ternal interrupt 9 is enabled	
	ex8	1	External interrupt 8 enab	le	
			When ex8=0 external inter	rupt 8 is disabled.	
			When ex8=1 and eal=1 ex	ternal interrupt 8 is enabled.	
		0			
A9h	IP0	7:0	Default : 0x00	Access : R/W	
	NU	7	No use		

Address	Mnemonic	Bits	Descriptio	n		
	wdts	6	Watchdog	timer s	tatus fl	ag
			Set by hard	dware w	hen the	watchdog timer reset occurs
		5:0	Interrupt p	Interrupt priority		
			Each bit to	Each bit together with corresponding bit from IP0 register		
			specifies th	specifies the priority level of the respective interrupt priority		
			group.	group.		
			[ip1.0 , ip0	.0] decid	de Interr	rupt Group0 priority.
				-		rupt Group1 priority
				-		rupt Group2 priority
				-		rupt Group3 priority
				_		rupt Group4 priority
			[ip1.5 , ip0	.5] decid	de Interr	rupt Group5 priority
			The priority	/ rule are	ə:	
			ip1.x	lp0.x	Group	priority
			0	0	Level	0 (lowest)
			0	1	Level	1
			1	0	Level	2
			1	1	Level	3 (highest)
B9h	IP1	7:0	Default : 0x00 Access : R/W		Access : R/W	
	NU	7:6	No use			

Address	Mnemonic	Bits	Desc	Description				
		5:0	Inter	rupt	priority			
			Each	bit to	ogether w	ith corre	esponding bit from IP0 reg	ister
			spec	ifies t	he priorit	y level o	of the respective interrupt p	riority
			grou					
				-	_		rupt Group0 priority.	
					-		rupt Group1 priority	
				-	_		rupt Group2 priority	
				-	_		rupt Group3 priority	
				[ip1.4 , ip0.4] decide Interrupt Group4 priority [ip1.5 , ip0.5] decide Interrupt Group5 priority				
			[, ,	, ip.	0.0] 40010	JO 1111011	apt Groupo priority	
			The	priorit	y rule are) :		
			ip1	l.x	lp0.x	Group	priority	
			0		0	Level	0 (lowest)	
			0		1	Level	1	
			1		0	Level	2	
			1		1	Level	3 (highest)	
C0h	IRCON	7:0	Defa	ult : (0x00		Access : R/W	
	exf2	7	Time	r 2 ex	kternal re	load fla	g	
	tf2	6	Time	er 2 o\	erflow fla	ag		
	iex6	5	Exte	rnal ir	nterrupt 6	edge fl	ag	
	iex5	4	Exte	rnal ir	nterrupt 5	edge fl	ag	
	iex4	3	Exte	rnal ir	nterrupt 4	edge fl	ag	
	iex3	2	Exte	rnal ir	nterrupt 3	edge fl	ag	
	iex2	1	Exte	rnal ir	nterrupt 2	edge fl	ag	
	iex7	0	Exte	rnal ir	nterrupt 7	edge fl	ag	
BFh	IRCON2	7:0	Defa	ult : (0x00		Access : R/W	
	NU	7:5	NO U	JSE				
	iex12	4	Exte	rnal ir	nterrupt 1	2 edge	flag	
	iex11	3	Exte	External interrupt 11 edge flag				
	iex10	2	External interrupt 10 edge flag					
	iex9	1	Exte	External interrupt 9 edge flag				

I	Address	Mnemonic	Bits	Description
		iex8	0	External interrupt 8 edge flag

Table 8-12: ISR SFR

8.5 SPI

The SPI interface provides full-duplex, synchronous, serial communication. There are two modes, master and slave for this interface. The master mode has one chip-select pin output, "SPSSN0", so it can communicate with one SPI-slave device. On the other hand, the master and slave mode has common data ports, "MOSI", "MISO" and clock port, "SCLK".

The SPI can also use interrupt to control communication flow. Its interrupt request is "int_vect_4B" which is shared with "External Interrupt 2".

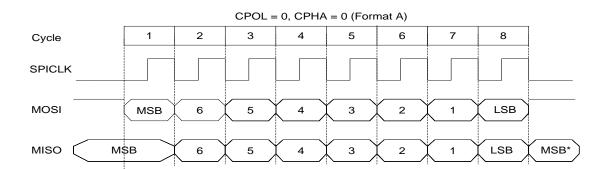
When SPI is as MASTER, Its pin connection is:

"MOSI" --- master output

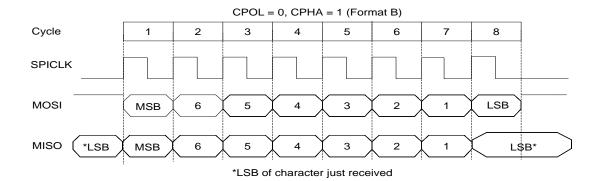
"MISO" --- master input

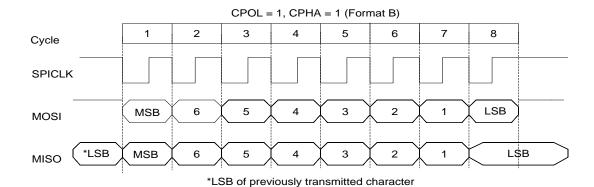
"SPSSN0" --- output, slave select

"SCLK" ---- output, serial shift clock


When SPI is as SLAVE, Its pin connection is:

"MOSI" --- slave input


"MISO" --- slave output


"SSN" --- input, slave select

"SCLK" ---- input, serial shift clock

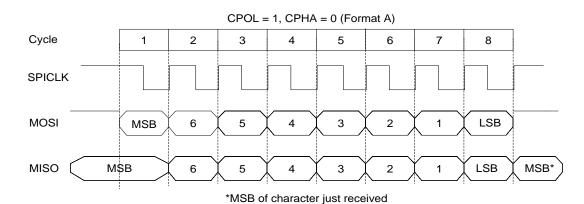


Figure 8-5 : SPI Transfer Format

SPI Register()SFR Register - E1h~E4

Address	Mnemonic	Bits	Description			
E1h	SPSTA	7:0	Default : 0x00	Access : R/W		
	Spif	7	Serial Peripheral Data Transfer Flag			
			Set by hardware upon data transfer completion.			
			Cleared by hardware when data transfer is in progress. Can			
			be also cleared by reading the "spsta" register with the "spif"			
			bit set, and then reading th	e "spdat" register.		

Address	Mnemonic	Bits	Description		
	Wcol	6	Write Collision Flag		
			Set by hardware upon writ	e collision to "spdat".	
			Cleared by hardware upon	data transfer completion when no	
			collision has occurred. Car	be also cleared by an access to	
			"spsta" register and an access to "spdat" register.		
	sserr	5	Synchronous Serial Slav	e Error Flag	
			Set by hardware when "ss	n" input is de-asserted before the	
			end of receive sequence.	Cleared by disabling the SPI	
			module (clearing "spen" bit	in "spcon" register).	
	modf	4	Mode Fault Flag		
			Set by hardware when the	"ssn" pin level is in conflict with	
			actual mode of the SPI_MS	S controller (configured as master	
			while externally selected a	s slave).	
			Cleared by hardware wher	n the "ssn" pin is at appropriate	
			level. Can be also cleared	by software by reading the "spsta"	
			register with "modf" bit set.		
	NU	3:0	NO USE		
E2h	SPCON	7:0	Default : 0x00	Access : R/W	
	spr2	7	Serial Peripheral Rate 2		
			Together with "spr1" and "s	spr0" defines the clock rate in	
			master mode.		
	spen	6	Serial Peripheral Enable	Serial Peripheral Enable	
			When cleared disables the SPI interface.		
			When cleared disables the	SPI interface.	
			When cleared disables the When set enables the SPI		
	ssdis	5	When set enables the SPI		
	ssdis	5	When set enables the SPI When cleared enables the	interface.	
	ssdis	5	When set enables the SPI When cleared enables the Slave modes. When set di	interface. "ssn" input in both Master and	
	ssdis	5	When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes.	interface. "ssn" input in both Master and sables the "ssn" input in both	
	ssdis	5	When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes.	interface. "ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no	
	ssdis	5	When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes. effect if "cpha"=0. When "s	interface. "ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no	
			When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes. effect if "cpha"=0. When "s request will be generated.	"ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no sdis" is set, no "modf" interrupt	
			When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes. effect if "cpha"=0. When "s request will be generated. Serial Peripheral Master	"ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no sdis" is set, no "modf" interrupt the SPI as a Slave.	
			When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes. effect if "cpha"=0. When "s request will be generated. Serial Peripheral Master When cleared configures t	"ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no sdis" is set, no "modf" interrupt the SPI as a Slave.	
	mstr	4	When set enables the SPI When cleared enables the Slave modes. When set di Master and Slave modes. effect if "cpha"=0. When "s request will be generated. Serial Peripheral Master When cleared configures t When set configures the S Clock Polarity	"ssn" input in both Master and sables the "ssn" input in both In Slave mode, this bit has no sdis" is set, no "modf" interrupt the SPI as a Slave.	

Address	Mnemonic	Bits	[Descrip	tion					
	cpha	2	(Clock P	hase					
			١	When cl	eared, d	data is s	am	pled when the "sclk" leaves the		
			i	dle state	e (see "	cpol"). V	Vhe	en set, data is sampled when the		
			**	"sclk" returns to idle state (see "cpol").						
	spr1	1	,	Serial P	eripher	al Rate				
			٦	Γogethe	r with "s	spr2" sp	ecit	fy the serial clock rate in Master		
	2.7.0		r	node.						
	spr0	0		Fclk is	the freq	uency c	of IV	ICU		
				spr2	spr1	spr0	S	erial Peripheral Rate		
				0	0	0	F	clk / 2		
				0	0	1	F	clk / 4		
				0	1	0	F	clk / 8		
				0	1	1	F	clk / 16		
				1	0	0	F	clk / 32		
				1	0	1	F	clk / 64		
				1	1	0	F	clk / 128		
				1	1	1	th	e master clock is not generated		
							()	when "cpol" = '1' on the "sclk"		
							OI	utput is high level, otherwise is		
							lo	w level)		
E3h	SPDAT	7:0	[Default	: 0x00			Access : R/W		
		7:0	١	While wr	iting to	the SPI	DA ⁻	Γ data is placed directly into the		
			S	shift regi	ster (th	ere is no	o tr	ansmit buffer).		
			F	Reading	the SP	DAT ref	turr	s the value located in the receive		
			Ł	ouffer, n	ot the s	hift regi	ste	r		
E4h	SPSSN	7:0	Default : 0xFF Access : R/W				Access : R/W			
	NU	7:1	7:1 NO USE							
	spssn0	0	[Data wri	tten to t	his regi	ste	r is directly available on the		
			"	spssn0"	output					
					Jaipat	•				

Table 8-13 : SPI SFR

8.6 I2C

The I2C interface uses two wires to transfer information between devices. This kind of bus can have a few masters (not only one) and slaves at the same time, so the circuit has to manage the bus confliction. This interface meets the Philips I2C bus specification and supports all transfer modes from and to the I2C bus. This bus has two bi-directional open-drain lines, "SDA" and "SCLK". Note that it needs one pull-up resistor on I2C bus. The "SDA" and "SCLK" lines referred further are the actual I2C bus signals, while the I2C component is connected to them with the use of open-drains. Each device connected to the bus is software addressable by a unique address. The I2C is a true multi-master bus including collision detection and arbitration to prevent data corruption if two or more masters simultaneously initiate data transfer.

The I2C interface has four operation modes:

Master Transmitter Mode:

Serial data output through "SDA" while "SCLK" outputs the serial clock. The first byte transmitted contains the slave address of the receiving device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic 0, and for example that a "W" is transmitted. Thus the first byte transmitted is SLA+W. Serial data is transmitted 8 bits at a time. After each byte is transmitted, an acknowledge bit is received. START and STOP conditions are output to indicate the beginning and the end of a serial transfer.

Master Receiver Mode:

The first byte transmitted contains the slave address of the transmitting device (7 bits) and the data direction bit. In this case the data direction bit (R/W) will be logic 1, and we say that an "R" is transmitted. Thus the first byte transmitted is SLA+R. Serial data is received via "SDA" while "SCL" outputs the serial clock. Serial data is received 8 bits at a time. After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are output to indicate the beginning and end of a serial transfer.

Slave Receiver Mode:

Serial data and the serial clock are received through "SDA" and "SCLK" After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of the slave address and direction bit.

Slave Transmitter Mode:

The first byte is received and handled as in the slave receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed. Serial data is transmitted via "SDA" while the serial clock is input through "SCLK". START and STOP conditions are recognized as the beginning and end of a serial transfer.

In the master mode, the arbitration logic checks that every transmitted high state ('1') on "SDA" actually appears as high state ('1') on the I2C bus "SDA". If another device on the bus overrides high and pulls the "SDA" line low ('0'), arbitration is lost and the I2C immediately changes from master transmitter to slave receiver. The synchronization logic synchronizes the serial clock generator with the clock pulses on the "SCLK" line from another device.

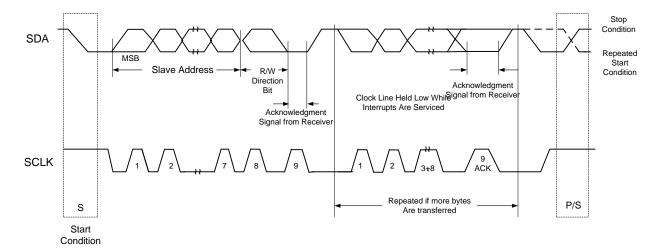


Figure 8-6: Waveform of I2C Bus

8.6.1 Serial Clock Rate of I2C

One programmable clock pulse generator provides the SCLK clock when I2C block is in master mode. The programmable output clock frequencies ranges from Fclk/60 to Fclk/256 and the Timer 1 overflow rate divided by eight.

cr2	cr1	Cr0	SCLK frequency
0	0	0	Fclk divided by 256
0	0	1	Fclk divided by 224
0	1	0	Fclk divided by 192
0	1	1	Fclk divided by 160
1	0	0	Fclk divided by 960
1	0	1	Fclk divided by 120
1	1	0	Fclk divided by 60
1	1	1	"Timer1 overflow" divided by 8

Table 8-14: Clock Rate of I2C

The "si" flag of the "i2ccon" register is set by hardware when one of 25 out of 26 possible I2C states is entered. The only state that does not set the "si" is state F8h, which indicates that no relevant state information is available. The "si" flag must be cleared by software. In order to clear the "si" bit, '0' must be written to this bit. Writing a '1' to' si bit does not change value of the "si". The I2C interrupt vector is shared

Release: Mar, 2013 - 84 / 110 - Rev.04

with the External Interrupt 7. The "si"signal is OR-ed with the External Interrupt 7 edge flag, before it comes into the Interrupt Controller (ISR). To determine the actual source of that interrupt, the "si" flag has to be investigated by the interrupt service routine. Since the External Interrupt 7 flag is automatically cleared after vectoring to the service subroutine, only the state of the "si" flag brings the information of the actual source of the interrupt.

Statues	in Master Transmitter Mod	е					
Status	Status of	Application Software	respons	se			Next action taken by
code	the I2C	to/from	to 120	CCON			I2C hardware
		I2DAT	sta	sto	si	aa	
08H	A START condition has	Load SLA+W	Х	0	0	Х	SLA+W will be transmitted;
	been transmitted						ACK bit will be received
10H	A repeated START	Load SLA+W or	Х	0	0	Х	As above
	condition has been	Load SLA+R	Х	0	0	Х	SLA+W will be transmitted;
	transmitted						SIO1 will be switched to MST/REC
							mode
18H	SLA+W has been	Load data byte	0	0	0	Х	Data byte will be transmitted;
	transmitted; ACK has	Or					ACK bit will be received
	been received	no action	1	0	0	Х	Repeated START will be transmitted;
		Or no action	0	1	0	Х	STOP condition will be transmitted;
		Or					STO flag will be reset
		no action	1	1	0	Х	STOP condition followed by a
							START condition will be transmitted;
							STO flag will be reset
20H	SLA+W has been	Load data byte	0	0	0	Х	Data byte will be transmitted;
	transmitted; NOT ACK	Or					ACK bit will be received
	has been received	no action	1	0	0	Х	Repeated START will be transmitted;
		Or no action	0	1	0	Х	STOP condition will be transmitted;
		Or					STO flag will be reset
		no action	1	1	0	Х	STOP condition followed by a
							START condition will be transmitted;
							STO flag will be reset
28H	Data byte in S1DAT has	Load data byte	0	0	0	Х	Data byte will be transmitted;
	been transmitted; ACK	Or					ACK bit will be received
	has been received	no action	1	0	0	Х	Repeated START will be transmitted;
		Or no action	0	1	0	Х	STOP condition will be transmitted;
		Or					STO flag will be reset
		no action	1	1	0	Х	STOP condition followed by a

							START condition will be transmitted;
							STO flag will be reset
30H	Data byte in S1DAT has	Load data byte	0	0	0	Х	Data byte will be transmitted;
	been transmitted; NOT	Or					ACK bit will be received
	ACK has been received	no action	1	0	0	Х	Repeated START will be transmitted;
		Or no action	0	1	0	Х	STOP condition will be transmitted;
		Or					STO flag will be reset
		no action	1	1	0	Х	STOP condition followed by a
							START condition will be transmitted;
							STO flag will be reset
38H	Arbitration lost in	no action	0	0	0	Х	I2C bus will be released;
	SLA+R/W or	Or no action					not addressed slave will be entered
	Data bytes		1	0	0	Х	A START condition will be transmitted
							when the
							bus becomes free

Table 8-15: Statues in I2C Master Transmitter Mode

Statues i	n Master Receive Mode						
Status	Status of	Application Softwa	re respo	nse			Next action taken by
code	the I2C	to/from	to 120	CCON			I2C hardware
		I2DAT	sta	sto	si	aa	
08H	A START condition has	Load SLA+R	Х	0	0	Х	SLA+R will be transmitted; ACK will be
	been transmitted						received
10H	A repeated START	Load SLA+W or	Х	0	0	Х	As above
	condition has been	Load SLA+R	Х	0	0	х	SLA+W will be transmitted;
	transmitted						SIO1 will be switched to
							Master/Receive mode
38H	Arbitration lost in	no action	0	0	0	Х	I2C bus will be released; not
	SLA+R/W or	Or					addressed slave will be entered.
	Data bytes	no action	1	0	0	Х	A START condition will be transmitted
							when the bus becomes free
40H	SLA+R has been	no action	0	0	0	0	Data byte will be received;
	transmitted; ACK has	Or					NOT ACK bit will be returned
	been received	no action	0	0	0	1	Data byte will be received;
							ACK bit will be returned
48H	SLA+R has been	no action	1	0	0	Х	Repeated START condition will be

	transmitted; NOT ACK	Or					transmitted
	·		•		•		
	has been received	no action	0	1	0	X	STOP condition will be transmitted;
		Or					STO flag will be reset
		no action	1	1	0	х	STOP condition followed by a
							START condition will be transmitted;
							STO flag will be reset
50H	Data byte has been	Read data byte	0	0	0	0	Data byte will be received;
	received; ACK has	or read data byte					NOT ACK bit will be returned
	been returned		0	0	0	1	Data byte will be received;
							ACK bit will be returned
58H	Data byte has been	Read data byte	1	0	0	Х	Repeated START condition will be
	received; NOT ACK has	or					transmitted
	been returned	read data byte	0	1	0	Х	STOP condition will be transmitted;
		or					STO flag will be reset
		read data byte	1	1	0	x	STOP condition followed by a
							START condition will be transmitted;
							STO flag will be reset

Table 8-16: Statues in I2C Master Receive Mode

Statues in	n Slave Transmitter Mode						
Status	Status of	Application Softwa	re respo	nse			Next action taken by
code	the I2C	to/from	to/from to I2CCON				I2C hardware
		I2DAT	sta	sto	si	aa	
A8H	Own SLA+R has been	Load data byte	Х	0	0	0	Last data byte will be transmitted and
	received; ACK has	or load data byte					ACK bit will be received
	been returned		Х	0	0	1	Data byte will be transmitted; ACK will
İ							be received
ВОН	Arbitration lost in	Load data byte	Х	0	0	0	Last data byte will be transmitted and
	SLA+R/W as master;	or load data byte					ACK bit will be received
	Own SLA+R has been						Data byte will be transmitted; ACK bit
	received, ACK has		Х	0	0	1	will be received
	been returned						
В8Н	Data byte in I2CDAT	Load data byte	Х	0	0	0	Last data byte will be transmitted and
	has been transmitted;						ACK bit will be received
	ACK has been	or load data byte	Х	0	0	1	Data byte will be transmitted; ACK bit
	received						will be received
СОН	Data byte in I2CDAT	no action	0	0	0	0	Switched to "not addressed slave"
	has been transmitted;						mode; no recognition of own slave

	NOT ACK has been						address or general call address.
	received	Or no action	0	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized.
		Or no action	1	0	0	0	Switched to "not addressed slave"
							mode; no recognition of own slave
							address or general call address;
							START condition will be transmitted
		Or no action					when the bus becomes free
			1	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized;
							START condition will be transmitted
							when the bus becomes free
C8H	Last data byte in	no action	0	0	0	0	Switched to "not addressed slave"
	I2CDAT has been						mode; no recognition of own slave
	transmitted (AA = 0);						address or general call address
	ACK has been	Or no action	0	0	0	1	Switched to "not addressed slave"
	received						mode; own slave address or general
							call address will be recognized
		Or no action	1	0	0	0	Switched to "not addressed slave"
							mode; no recognition of own slave
							address or general call address;
							START condition will be transmitted
							when the bus becomes free
		Or no action	1	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized;
							START condition will be transmitted
							when the bus becomes free
-						•	

Table 8-17: Statues in I2C Slave Transmitter Mode

Statues in	Statues in Slave Receive Mode								
Status	Status of	Application Softwa	re respo	nse	Next action taken by				
code	the I2C	to/from	to 120	CCON		I2C hardware			
		I2DAT	sta	sto	si	aa			
60H	Own SLA+W has	no action	Х	0	0	0	Data byte will be received and NOT		

Product Data Sheet PL8331

	been received; ACK						ACK will be returned.
	has been returned	Or no action	X	0	0	1	Data byte will be received and ACK
	nac scon rotumed	or no dollon					will be returned.
68H	Arbitration lost in	no action	Х	0	0	0	Data byte will be received and NOT
	SLA+R/W as master;						ACK will be returned.
	Own SLA+W has	Or no action	X	0	0	1	Data byte will be received and ACK
	been received, ACK						will be returned.
	returned						
70H	General call address	no action	Х	0	0	0	Data byte will be received and NOT
	(00H) has been						ACK will be returned.
	received; ACK has	Or no action	Х	0	0	1	Data byte will be received and ACK
	been returned						will be returned.
78H	Arbitration lost in	no action	Х	0	0	0	Data byte will be received and NOT
	SLA+R/W as master;						ACK will be returned.
	General call address	Or no action	Х	0	0	1	Data byte will be received and ACK
	has been received,						will be returned.
	ACK has b						
80H	Previously addressed	Read data byte	Х	0	0	0	Data byte will be received and NOT
	with own SLV	or					ACK will be returned.
	address; DATA has	read data byte	Х	0	0	1	Data byte will be received and ACK
	been received; ACK						will be returned.
	has been returned						
88H	Previously addressed		0	0	0	0	Switched to "not addressed slave"
	with own SLA; DATA						mode; no recognition of own slave
	byte has been						address or general call address.
	received; NOT ACK		0	0	0	1	Switched to "not addressed slave"
	has been returned	Read data byte					mode; own slave address or general
							call address will be recognized.
		read data byte	1	0	0	0	Switched to "not addressed slave"
		,					mode; no recognition of own slave
		read data byte					address or general call address;
		or					START condition will be transmitted
		read data byte					when the bus becomes free.
		read data byte	1	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized;
							START condition will be transmitted
							when the bus becomes free.
90H	Previously addressed	Read data byte	Х	0	0	0	Data byte will be received and NOT

	with General Call;	or					ACK will be returned
	DATA byte has been	read data byte	Х	0	0	1	Data byte will be received and ACK
	received; ACK has						will be returned
	been returned						
98H	Previously addressed	Read data byte	0	0	0	0	Switched to "not addressed slave"
	with General Call;	or					mode; no recognition of own slave
	DATA byte has been						address or general call address.
	received; NOT ACK	read data byte	0	0	0	1	Switched to "not addressed slave"
	has been returned						mode; own slave address or general
		or					call address will be recognized.
		read data byte	1	0	0	0	Switched to "not addressed slave"
		or					mode; no recognition of own slave
							address or general call address;
							START condition will be transmitted
							when the bus becomes free.
		read data byte	1	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized;
							START condition will be transmitted
							when the bus becomes free.
A0H	A STOP condition or	no action	0	0	0	0	Switched to "not addressed slave"
	repeated START						mode; no recognition of own slave
	condition has been						address or general call address
	received while still	Or no action	0	0	0	1	Switched to "not addressed slave"
	addressed as						mode; own slave address or general
	SLAVE/RECEIVE or						call address will be recognized
	SLAVE/TRANSIMITTE	Or no action	1	0	0	0	Switched to "not addressed slave"
	R						mode; no recognition of own slave
							address or general call address;
							START condition will be transmitted
							when the bus becomes free.
		Or no action	1	0	0	1	Switched to "not addressed slave"
							mode; own slave address or general
							call address will be recognized;
							START condition will be transmitted
							when the bus becomes free.

Table 8-18: Tatues in I2C Slave Receive Mode

Release: Mar, 2013 - 90 / 110 - Rev.04

8.6.2 IIC Register(SFR Register - DAh~DDh)

Address	Mnemonic	Bits	Description						
DAh	I2CDAT	7:0	Default : 0x00	Access : R/W					
		7:0	I2C DATA REGISTER						
				mitted through I2C bus or a byte					
			which has just been received through I2C bus.						
DBh	I2CADR	7:0	Default : 0x00	Access : R/W					
	adr	7:1	Own I2C address						
			7-bit address						
	gc	0	General Call Address Ac	knowledge					
			If this bit is set, the genera	I call address is recognized;					
			otherwise it is ignore						
DCh	I2CCON	7:0	Default : 0x00 Access : R/W						
	cr2	7	clock rate 2						
	ens1	6	I2C enable bit						
			When ens1='0' the "sdao"	and "sclo" outputs are set to 1, that					
			drives the output pads of the	he chip in high impedance, and					
			"sdai" and "scli" input signa	als are ignored.					
			When ens1='1' I2C compo	nent is enabled.					
	sta	5	Start flag						
			When sta='1', the I2C com	ponent checks the I2C bus status					
			and if the bus is free a STA	ART condition is generated.					
	sto	4	Stop flag						
			When sto='1' and I2C inter	face is in master mode, a STOP					
			condition is transmitted to	the I2C bus.					
	si	3	Serial interrupt Flag						
			The "si "is set by hardware	when one of 25 out of 26 possible					
			I2C states is entered. The only state that does not set the "is state F8h, which indicates that no relevant state information is available. The "si" flag must be cleared by						
			software. In order to clear	the "si" bit, '0' must be written to					
			this bit. Writing a '1' to si b	it does not change value of the "si".					

Address	Mnemonic	Bits	Description		
	aa	2	Assert acknowledg	ge	
			When aa='1', an "ac	knowledge" will be returned when:	
			- the "own sla	ve address" has been received	
			- the general o	call address has been received	
			while gc bi	t in i2caddr register was set	
			- a data byte h	nas been received while I2C was	
			in master i	receiver mode	
			- a data byte h	nas been received while I2C was	
			in slave re	ceiver mode	
			When aa='0', an "no	t acknowledge" will be returned when:	
			ata byte has been red	eived while I2C was	
			master receiver mod	le	
			ata byte has been rec	eived while I2C was	
			in slave receiver	mode	
	cr1	1	clock rate bit 1		
	cr0	0	clock rate bit 0		
DDh	I2CSTA	7:0	Default : 0x00	Access : R/W	
	status	7:3	I2C Status code		
			indicate the 26 status of I2C NO use		
	NU	2:0			

Table 8-19 : I2C SFR

9. LCD

Using shared pins, the LCD module is capable of directly driving an LCD panel of 4 × 25 segments without compromising any PL8331 functions. It is capable of driving LCDs with 4× multiplexing. The external resistor ladder for LCD waveform voltage generation is supported. Each PL8331 has an embedded LCD control circuit, driver, and power supply circuit.

9.1 Power Control

PL8331 supports the LCD to 25 segments with 4 COM. Before using that, we need to have following initialization steps:

- 1. Enable the power of LCD and LCD driver
- 2. Set the PAD of LCD Segments as LCD usage
- 3. Set the PAD is output direction
- 4. Set the LCD clock

9.2 Initialize

The initial setting on the LCD as the IO set. First of all is enabling the power of LCD and LCD driver, then make the PADSE00-39 as LCD, not GPIO. Second, disable the SW of PADSE00-39 and input function, then enable the output function. And then set the LCD clock select to allow the display data to be updated. Settings are as follows:

LCDCON |=0x80 //Enable the LCD Driver

LCDCON|=0x03 //4x Multiplexing
LCDCON|=0x20 //Enable the Blink

LCDCLK|=0xC0 //The Blink rate is set by LCD_OFF_SEL LCDPIN|=0x80 //LCD_PIN Sequence Selection Enable

9.3 LCD Setup

The LCD configuration SFR (LCDCON, Address 0xE5) configures the LCD module to drive the type of LCD in the user end system. The COM0~COM3 & SE0~SE23 pins(PIN28~55) default to LCD segment lines. Selecting the 4x multiplex level in the LCD configuration SFR (LCDCON, Address 0xE5) by setting LMUX[1:0] to 11.

9.4 LCD Timing and Waveforms

An LCD segment acts like a capacitor that is charged and discharged at a certain rate. This rate, the refresh rate, determines the visual characteristics of the LCD. A slow refresh rate results in the LCD blinking on and off between refreshes. A fast refresh rate presents a screen that appears to be continuously lit. In addition, a faster refresh rate consumes more power. The frame rate, or refresh rate, for the LCD module is derived from the LCD clock, fLCDCLK. The LCD clock is selected by the bit (Bit 3:0) in the LCD configuration

SFR (LCDCLK, Address 0xE6). The minimum refresh rate needed for the LCD to appear solid (without blinking) is independent of the multiplex level. The LCD waveform frequency, fLCD, is the frequency at which the LCD switches the active common line. Thus, the LCD waveform frequency depends heavily on the multiplex level. The frame rate and LCD waveform frequency are set by fLCDCLK, the multiplex level, and the FD frame rate selection bits in the LCD clock SFR (LCDCLK, Address 0xE6[3:0]).

The LCD module provides 16 different frame rates for fLCDCLK = 2048 Hz, ranging from 8 Hz to 128 Hz for an LCD with 4× multiplexing. Fewer options are available with fLCDCLK = 1024 Hz, ranging from 8 Hz to 128 Hz for a 4× multiplexed LCD. The 128 Hz clock is beneficial for battery operation because it consumes less power than the 2048 Hz clock. The frame rate is set by the FD bits in the LCD clock SFR (LCDCLK, Address 0xE6[3:0]). The LCD waveform is inverted at twice the LCD waveform frequency, fLCD. This way, each frame has an average dc offset of 0. ADC offset degrades the lifetime and performance of the LCD.

9.5 LCD Control Registers (SFR Registers -E5h~E8h/F8h~FCh)

LCD Contr	ol Registers							
SFR	Mnemonic	Bits	Description					
E5h	LCDCON	7:0	Default : 0x00 Access : R/W					
	LCDEN	7	LCD Enable. If this bit is set, the LCD	driver is enabled.				
	LCDRST	6	LCD Data Register Reset. If this bit is set, the LCD data registers are to zero.					
	BLINKEN	5	Blink Mode Enable Bit. If this bit is set, blink mode is enabled. The blink mode is configured by the BLKMOD[1:0] and BLKFREQ[1:0] bits in the LCD Clock SFR.					
	LCDPSM2	4	Force LCD off when in PSM2(Sleep Mode). "0" The LCD is disabled or enabled in PSM2 by LCDEN bit. "1" The LCD is disabled in PSM2 regardless of LCDEN setting.					
	-	3	Reserved					
	-	2	Reserved					
	LMUX	1:0	"11" = 4x Multiplexing.					
E6h	LCDCLK	7:0	Default : 0x00	Access : R/W				
	BLKMOD	7:6	7:6 "00" The blink rate is controlled by software. The display is "01" The blink rate is controlled by software. The display is "10" The blink rate is 2 Hz. "11" The blink rate is set by LCD_OFF_SEL (RTC 0x0E)					
	-	5:4	Reserved					

LCD Contr	LCD Control Registers							
SFR	Mnemonic	Bits	Description	Description				
	FR[3:0]	3:0	LCD Frame Rate Selection Bits					
E7h	LCDPIN	7:0	Default : 0x00	Access : R/W				
	LCD_PINEN	7	LCD_PIN Sequence Selection Enable	9				
	LCDPIN_SEQ[2:0]	6:4	LCD Pin-out Sequence Selection					
			110: CM0~CM3 + SE0~SE24					
			111: SE23~SE0 + CM3~CM0					
	-	3:0	Reserved.					
E8h	LCDCONX	7:0	Default : 0x40	Access : R/W				
	-	7:0	Reserved.					
F8h	LCDPTR	7:0	Default : 0x00	Access : R/W				
	R/W	7	Read or Write LCD Bit. If this bit is set, the data in LCDDAT is written to the					
			address indicated by the LCDPTR[5:0]					
	ADDRESS	6:0	LCD Data Address					
F9h	LCDDAT	7:0	Default : 0x00	Access : R/W				
			Data to be written into or read out of t	he LCD Memory SFRs.				
FAh	LCDCONY	7:0	Default : 0x00	Access : R/W				
	-	7	Reserved.					
	INI_LVL	6	Frame Inversion Mode Enable Bit. If t	his bit is set, frames are inverted every				
			other frame. If this bit is cleared, frames are not inverted.					
	-	5:1	Reserved.					
	REFRESH	0	Refresh LCD Memory Bit. This bit sh	ould be set by the user. When set, the				
			LCD driver does not use the data in	the LCD data registers to update the				
			display. The LCD data registers can b	e updated by the 8052. When cleared,				
			the LCD driver uses the data in the L	CD data registers to update display at				
			the next frame.					
FBh	LCDSEGE2	7:0	Default : 0x00	Access : R/W				
	-	7:4	Reserved					
		3	The segment order reverse					
			"0" = SEG0 - > SEG31					
			"1" = SEG31 -> SEG0					

LCD Cor	LCD Control Registers							
SFR	Mnemonic	Bits	Description					
		2	The COM order reverse					
			"0" = COM0 - > COM3					
			"1" = COM3 -> COM0					
	-	1:0	Reserved					
FCh	LCDSEGE3	7:0	Default : 0x00 Access : R/W					
	-	7:0	Reserved.					

Table 9-1: LCD Control Registers (SFR Registers)

9.6 Memory for LCD Buffer

Using the indirect access to LCDPTR and LCDDAT SFR allows to display something. Following is the memory mapping for the LCD bufferL

	LCD Da	ta SFR(L	CDDAT,0	XF9)				
LCD Memory Address	СОМЗ	COM2	COM1	COM0	COM3	COM2	COM1	СОМО
LCD Pointer SFR	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
(LCDPTR,0XF8)								
0x0C					SEG24	SEG24	SEG24	SEG24
0x0B	SEG23	SEG23	SEG23	SEG23	SEG22	SEG22	SEG22	SEG22
0x0A	SEG21	SEG21	SEG21	SEG21	SEG20	SEG20	SEG20	SEG20
0x09	SEG19	SEG19	SEG19	SEG19	SEG18	SEG18	SEG18	SEG18
0x08	SEG17	SEG17	SEG17	SEG17	SEG16	SEG16	SEG16	SEG16
0x07	SEG15	SEG15	SEG15	SEG15	SEG14	SEG14	SEG14	SEG14
0x06	SEG13	SEG13	SEG13	SEG13	SEG12	SEG12	SEG12	SEG12
0x05	SEG11	SEG11	SEG11	SEG11	SEG10	SEG10	SEG10	SEG10
0x04	SEG9	SEG9	SEG9	SEG9	SEG8	SEG8	SEG8	SEG8
0x03	SEG7	SEG7	SEG7	SEG7	SEG6	SEG6	SEG6	SEG6
0x02	SEG5	SEG5	SEG5	SEG5	SEG4	SEG4	SEG4	SEG4
0x01	SEG3	SEG3	SEG3	SEG3	SEG2	SEG2	SEG2	SEG2
0x00	SEG1	SEG1	SEG1	SEG1	SEG0	SEG0	SEG0	SEG0

LCD Frame Rate Selection for fLCDCLK=2048Hz

				2*Multiplexing		3* Multiplexing		4* Multiplexing	
FD3	FD2	FD1	FD0	fLCD(Hz)	Frame Rate(Hz)	fLCD(Hz)	Frame Rate(Hz)	fLCD(Hz)	Frame Rate(Hz)
0	0	0	1	-	-	-	-	-	-
0	0	1	0	170.7	85.3	341.3	113.8 ¹	341.3	85.3
0	0	1	1	128	64	256	85.3	256	64
0	1	0	0	102.4	51.2	204.8	68.3	204.8	51.2
0	1	0	1	85.3	42.7	170.7	56.9	170.7	42.7
0	1	1	0	73.1	36.6	146.3	48.8	146.3	36.6
0	1	1	1	64	32	128	42.7	128	32
1	0	0	0	56.9	28.5	113.8	37.9	113.8	28.5
1	0	0	1	51.2	25.6	102.4	34.1	102.4	25.6
1	0	1	0	46.5	23.25	93.1	31	93.1	23.25
1	0	1	1	42.7	21.35	85.3	28.4	85.3	21.35
1	1	0	0	39.4	19.7	78.8	26.3	78.8	19.7
1	1	0	1	36.6	18.3	73.1	24.4	73.1	18.3
1	1	1	0	34.1	17.05	68.3	22.8	68.3	17.05
1	1	1	1	32	16	64	21.3	64	16
0	0	0	0	16	8	32	10.7	32	8

Address: RTC_INDEX(D2h) / Data: RTC_DATA(D3h)						
SFR-D2h	n SFR-D3h Bits Description					
0Fh	RTC_CONF_F_reg	7:0	Default : 0x30 Access : R/W			
	LCD_CLKSEL	3:2	LCD clock select			
			"00" : Disable LCD clock.			
			"01" : Disable LCD clock.			
			"10" :LCD clock decide by L	CD_CLK_FD[1:0].		
			"11" :128 Hz.			
	LCD_CLK_FD	1:0	"00" :2048 Hz			
			"01" :1024 Hz			
			"10" :4096 Hz			
			"11" :8192 Hz			

10. RTC

One Real Time Clock (RTC) is embedded inside PL8331. The external 32.768 kHz crystal is used as the clock source for the RTC. Calibration is provided to compensate the nominal crystal frequency and for variations in the external crystal frequency over temperature. By default, the RTC is active in all the power saving modes. The RTC counters retain their values through watchdog resets and external resets and are reset only during a power-on reset.

RTC	Built-In RTC
	Provide the information of Hour/Min/Sec
	HW Calendar included
	Interrupt for Time interval/ Midnight events

The PL8331 provides two ways to access the RTC data: by direct access through SFRs for configuration and by indirect access through address and data SFRs for the timekeeping registers and some other configurations. The address and data SFRs act as pointers to the RTC internal registers.

This section describes how to use the internal RTC, including read/write time information, setting the interrupt, and calibration.

10.1 Read/Write the RTC register

Since the RTC is embedded, the MCU can get the time information by indirect register access. The control register for RTC block access is in 0xD2 (RTC_INDEX) and 0xD3 (RTC_DATA).

SFR Registers					
Address	Iress Mnemonic Description				
D2h	RTC_INDEX Real time clock Indirect control register				
D3h	RTC_DATA				
D9h	KEYREG	RTC Key			

SFR	Mnemonic	Bits	Description		
D2h	RTC_INDEX	7:0	Default : 0x00 Access : R/W		
	RTC_ACCESS_EN	7	Register Access Enable		
			1: enable to access Indirect register		

SFR	Mnemonic	Bits	Description			
	RTC_WE_EN	6	Register Write Enable			
			1: enable to write Indirect register			
	-	5	Reserved.			
	RTC_ADDR	4:0	Register Address Port			
D3h	RTC_DATA	7:0	Default : 0x00 Access : R/W			
	RTC_DATA	7:0	Register DATA Port			

Before accessing the RTC block, user must enable the RTCKEY in 0xD9. The key must be set as 0xAC before read/write the RTC block register.

The information of the second/minutes/hours are in the RTC block register 0x03~0x05.

RTC Con	RTC Control Registers - Indirect Accessing				
Address: RTC_INDEX(D2h) / Data: RTC_DATA(D3h)					
SFR-D2h	SFR-D3h	Bits	Description		
04h	SEC	7:0	Default : 0x00 Access : R/W		
			This counter updates every second, referenced from the calibrated 32.768 kHz. It overflows from 59 to 0, incrementing the minutes counter (MIN). This register is retained during a watchdog reset. It is reset after a POR.		
05h	MIN	7:0	Default : 0x00	Access : R/W	
			This counter updates every minute, referenced from the calibrated 32.768 kHz. It overflows from 59 to 0, incrementing hours counter (HOUR). This register is retained during a watchdog reset. It is reset after a POR.		
06h	HOUR	7:0	Default : 0x00	Access : R/W	
			This counter updates every hour, referenced from the calibrate 32.768 kHz clock. If the TFH bit in the RTC Configuration SFR set, the HOUR SFR overflow from 23 to 0, setting the MIDNIGHT bit and creating a pending RTC interrupt. If the TF bit is cleared, the HOUR SFR overflows from 255 to 0, setting the MIDNIGHT bit and creating a pending RTC interrupt. This register is retained during a watchdog reset or an external result is reset after a POR.		

10.2 Interrupt Setting

The RTC provides the events for "Midnight Event" and "Interval Alarm Event". When the RTC rolls over 00:00:00, the Midnight event will be issued. User can handle the event in the interrupt. The interrupt vector for RTC interrupt is 11.

To enable the interrupt for RTC, you need to enable the interrupt in register 0x31 in PWRHV block.

31h	PWR_INT_EN	7:0	Default : 0xC0	Access : R/W
	INT_EN_MIN_NIGHT	6	Interrupt enable for RTC Mid-Night	
	INT_EN_RESET	5	Interrupt enable for RESET	
	INT_EN_RTC	4	Interrupt enable for RTC Alarm	

There are 3 interval timers supported in the embedded RTC. You can have 3 different time intervals for each alarm. To use the alarm in RTC, correct settings are needed:

- Set the interval base
- Set the interval
- Enable the interval Timer

Carry Out Base				
Alarm 0	1/128 second, Seconds, Minutes, Hours			
Alarm 1	Seconds, Minutes			
Alarm 2	Seconds, Minutes			

0Bh	INTVAL_0	7:0	Default : 0x00	Access : R/W
	INTVAL_0	7:0	The interval timer counts according to the time base established	
			in the ITS_0 bits of the RTC Configuration SFR. Once the number	
			of counts is equal to INTVAL_0, the ALARM_0 flag is set and a	
			pending RTC interrupt is creat	red.

10.3 RTC Calibration and Compensation

Like common electrical components, crystals have tolerance associated with them. A crystal that is specified to have a nominal frequency of 32.768 kHz at 25° C may actually have a frequency ± 20 ppm. The frequency also changes over temperature. For this reason, it is important to compensate the crystal frequency variation to keep the RTC accuracy. PL8331 makes it easy to achieve this with automatic hardware compensation of the RTC and an embedded temperature sensor and SAR ADC. This section will explain how to do the RTC calibration and compensation.

Do the RTC calibration and compensation with the register "RTCCOMP" and "TEMPCAL". Please refer to the register table. RTCCOMP is register 0x10 and 0x11 in RTC Block. And TEMPCAL is 0x12 and 0x13 in RTC block. To check the accuracy of RTC, output the clock and compare it with the RTC reference to determine the error. Choose one I/O pad as the RTC CAL output and set the output frequency as 500/512/16384 Hz depending on the setting in register 0x0E in RTC block.

11. Clock System

11.1 32K OSC

PLL = 1.024/2.048/4.096/8.192 MHz

IIC up to 400Kbps

SPI up to 1Mbps

UART up to 115.2Kbps

MCLK clock source from PLL and can be divided into 1~255 (8.192M~32.1255K Hz)

ADCLK clock source from PLL and can divide into 4~255 (2.048M~32.1255K Hz)

RTC calibration frequency output = 1Hz/500Hz

11.2 PLL

External 32.768KHz crystal is used with internal PLL as the clock system for the chip operation. The clock of the PLL could be set by the register. The PLL setting is controlled by register 0x32[6] and 0x31[1:0] in PWRLV Block

31h	ANA_CTL13	7:0	Default : 0x01	Access : R/W		
	-	7:5	Reserved			
	PLLCTL_STATUS	4	PLL Clock Status Read			
	DG_PD[6]	3	PLL power down 1: power down			
	-	2	Reserved			
	PLLFREQ[1:0]	1:0	PLL output frequency select (See PLLFREQ[2:0])			
	(DG_REG[54:53])		(When PLL_TESTMODE = 0)			
			00: 8MHz, 01: 4MHz, 10: 2MHz, 11: 1MHz			

Table 11-1: Registers for PLL Clock Setting

Not only is the PLL clock configurable, but also the MCU and meter clock. It is implemented by the clock divider after the PLL clock as shown below:

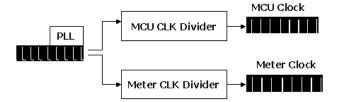


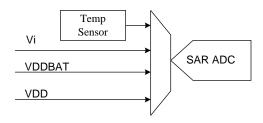
Figure 11-1: Clock Divider for MCU and DSP

The setting for the MCU clock divider and meter clock divider is at register 0x01 and 0x02 in PAD_FUNC block.

Release: Mar, 2013 - 102 / 110 - Rev.04

PADs Fun	PADs Function Control Registers - Indirect Accessing						
Address:	Address: PAD_FUNCTION_INDEX(9Eh) / Data: PAD_FUNCTION_DATA(9Fh)						
SFR-9Eh	SFR-9Fh	Bits	Description				
01h	DIV51_SELECT	7:0	Default : 0x0B	Access : R/W			
	DIV51_SELSEL[7:0]	7:0	8051 clock source selection 0x00: bypass; 0x01: divide by 2; 0xFF: divide by 256;				
02h	DIVPM_SELECT	7:0	Default : 0x07	Access : R/W			
	DIVPM_SELSEL[7:0]	7:0	meter clock source selection 0x00: bypass; 0x01: divide by 2; 0xFF: divide by 256;				

Table 11-2 : Registers for MCU and DSP Divider


For power consumption consideration, it is suggested setting MCU clock as 256K~1M and set Meter clock as 1M to get good accuracy in metering applications. User can also speed up the MCU clock if they have requirements for heavy computing loading.

12. SAR ADC and Internal Temperature Sensor

12.1 Block Diagram

There is one temperature sensor and 10-bit SAR ADC built in the PL8331 series. It can be used for monitoring the temperature in applications. This section describes how to use this function for advanced applications.

12.2 Description

There is one 10-bit SAR ADC to measure the analog input and one MUX is in front of the ADC to select the scanning channel. To monitor the temperature sensor, switch the scan channel to temperature sensor. The related settings will be described in the succeeding sections.

To use the temperature sensor, do the following steps:

- (1) Enable the temperature sensor
- (2) Enable the SAR ADC
- (3) Trigger the Scan
- (4) Read the SAR code
- (5) Compute the temperature based on the read SAR code

12.2.1 Enable the Temperature Sensor

Disable the power down of SAR and Temperature SAR by setting Register 0x14[8:7] as "1" in PWRHV block.

PWRHV C	PWRHV Control Registers - Indirect Accessing							
Address: PWRHVINDEX(FEh) / Data: PWRHVDATA(FFh)								
SFR-FEh	SFR-FEh SFR-FFh Bits Description							
14h	SAR_CTL11	7:0	Default : 0x00	Default: 0x00 Access: R/W				
		7	SAR Power Down Disable					
		6	TEMP SAR Power Down Disable					

Release: Mar, 2013 - 104 / 110 - Rev.04

12.2.2 Enable the SAR ADC

Disable the related power-down setting for SAR ADC in Register 0x67[4:0] in PWRHV Block.

67h	ANA_PD1	7:0	Default : 0x1F	Access : R/W
		4:0	SAR power down	
			When one of these bits is set , SAR will power down	

It is required to set the pre-defined key to use the SAR ADC. The register for the SAR key is at 0x03 of PWRHV block.

PWRHV Control Registers - Indirect Accessing					
Address: PWRHVINDEX(FEh) / Data: PWRHVDATA(FFh)					
SFR-FEh	SFR-FFh	Bits	Description		
03h	SAR_KEY	7:0	Default : 0x00	Access : R/W	
		7:0 SAR Register write key (8'hE8)			

12.2.3 Set the PGA Gain of the SAR ADC

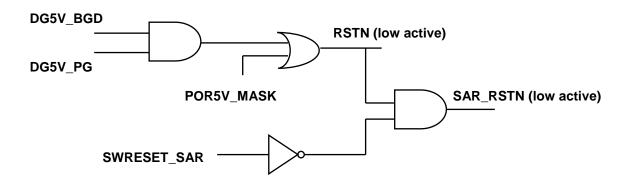
For temperature, the PGA gain of the SAR ADC needs to be x16. It is set in Register0x05[5:3] in PWRHV block.

05h	SAR_CTL0_SHADOW	7:0	Default : 0x10	Access : R/W
		5:3	Gain Setting for Channel	
			001: x1/2 , 010: x1 , 011: x2 , 111:x16 , others : x1	

12.2.4 Select the Channel for Scanning

To scan the SAR value from the temperature sensor, trigger the scanning by setting the scan bit in register 0x04 of PWRHV block. For temperature SAR, it is in Bit[7].

12.2.5 Read the SAR code


Once the SAR ADC completes the scan, the scan flag will be issued in Bit[4] of Register 0x11 in PWRHV block.

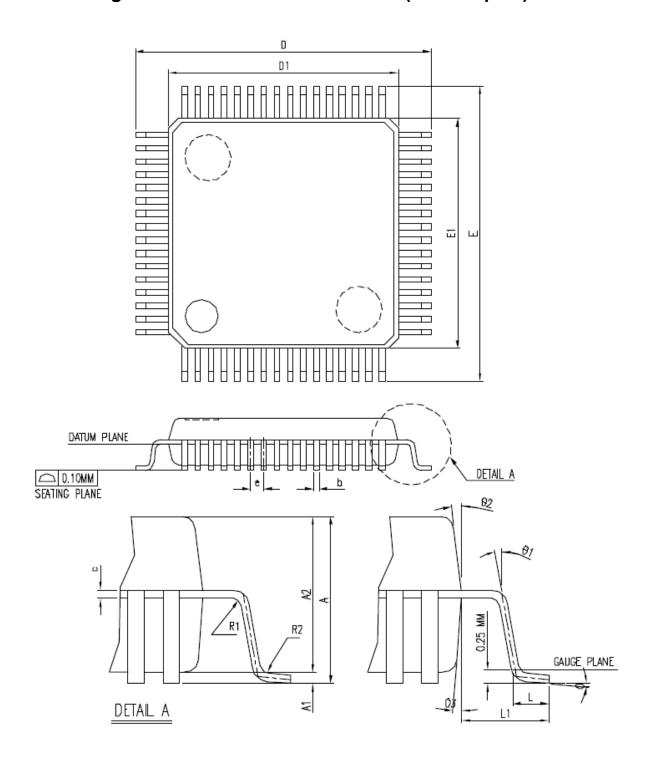
11h	SAR_FLAG3	7:0	Default : 0x00	Access : R/W0C
		4	Flag for Channel 7 One Time Scan	

After the scan is done, we can read out the SAR code from register 0x02[1:0] and 0x01[7:0] in PWRHV block. The implementation is illustrated in function "OneTimeScan()".

13. Reset System

The 3.3V power domain reset source comes from Bandgap and 3.3V power. It resets all circuits of the 3.3V domain. During sleep mode, the reset is blocked (POR5V_MASK is set by hardware in sleep mode). The circuit of SAR can be manually reset by setting Bit[1:0] of register 0x34 in PWRHV block.

PWRHV C	PWRHV Control Registers - Indirect Accessing					
Address: PWRHVINDEX(FEh) / Data: PWRHVDATA(FFh)						
SFR-FEh	SFR-FFh Bits Description					
34h	SAR_CTL0	7:0	Default : 0x00	Access : R/W		
	SAR_HWRESET	1	Hardware Reset for SAR , high active			
	SAR_SWRESET	0	Software Reset for SAR ,	high active		


The DSP reset also can be triggered manually. There are two kinds. One is for all DSP/PM circuits. It can be triggered by setting Bit[0] of the register 0x10 in PWRLV block.

PWRLV Control Registers - Indirect Accessing					
Address: PWRLVINDEX(CEh) / Data: PWRLVDATA(CFh)					
SFR-CEh	SFR-CFh	Bits	Description		
10h	METER_CTL0	7:0	Default : 0x02	Access : R/W	
	DSP_SWRESET	0	Software Reset for meter DSP , high active		

The other kind is only for DSP control register. It can be triggered by setting Bit[17:0] = 0x3FFFF of the register 0x2F in DSP Control Register.

14. Package Outline Dimensions - PL8331 (7x7 - 64 pins)

SYMBOL	DIMENSION IN MM			DIMENSION IN INCH			
	MIN.	NOM.	MAX.	MIN.	NOM.	MAX	
Α			1.60			0.063	
A1	0.05		0.15	0.0019		D.0059	
A2	1.35	1.40	1.45	0.053	0.055	0.057	
Ь	0.13	0.18	0.23	D,005	0_007	D,009	
C	0.09		0.20	0.0035		0.0078	
e	0.40 BASIC			0.016 BASIC			
D	9.00 BASIC			0.354 BASIC			
D1	7.00 BASIC			0.276 BASIC			
E	9.00 BASIC			0.354 BASIC			
E1	7.00 BASIC			0.276 BASIC			
L	0.45	0.60	0.75	0.018	0.024	0.030	
L1	1.00 REF.			0.039 REF.			
R1	O.DB			D,0031			
R2	0.08		0.20	0.0031		0.0078	
9	Ь	3.5	7	6	3.5	7	
0 1	ď			Q.			
0 2	11"	12"	13'	11,	12"	13	
0 3	11'	12"	13"	11'	12"	13"	
JEDEC	MS-026 (BBD)						

*NOTES: DIMENSIONS " D1 " AND " E1 " D0 NOT INCLUDE MOLD
PROTRUSION, ALLOWABLE PROTRUSION IS 0,25 mm PER SIDE.
" D1 " AND " E1 " ARE MAXIMUM PLASTIC BODY SIZE DIMENSIONS
INCLUDING MOLD MISMATCH.

Figure 14-1: PL8331 Package Outline Dimension

15. Ordering Information

15.1 Packaging Information

Device	Package Type	Pins	Temperature Range	ECO	Notes
PL8331	LQFP (7x7)	64	-40°C ~ +80°C	Green (RoHS)	

Table 15-1: Packaging Information

Disclaimer

All the information in this document is subject to change without prior notice. Prolific Technology Inc. does not make any representations or any warranties (implied or otherwise) regarding the accuracy and completeness of this document and shall in no event be liable for any loss of profit or any other commercial damage, including but not limited to special, incidental, consequential, or other damages.

Trademarks

The Prolific logo is a registered trademark of Prolific Technology Inc. All brand names and product names used in this document are trademarks or registered trademarks of their respective holders.

Copyrights

Copyright © 2013 Prolific Technology Inc. All rights reserved.

No part of this document may be reproduced or transmitted in any form by any means without the express written permission of Prolific Technology Inc.